• Title/Summary/Keyword: $DO_3SE$

Search Result 586, Processing Time 0.031 seconds

12-bit 10-MS/s CMOS Pipeline Analog-to-Digital Converter (12-비트 10-MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • Cho, Se-Hyeon;Jung, Ho-yong;Do, Won-Kyu;Lee, Han-Yeol;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.302-308
    • /
    • 2021
  • A 12-bit 10-MS/s pipeline analog-to-digital converter (ADC) is proposed for image processing applications. The proposed pipeline ADC consists of a sample and hold amplifier, three stages, a 3-bit flash analog-to-digital converter, and a digital error corrector. Each stage is operated by using a 4-bit flash ADC (FADC) and a multiplying digital-to-analog converter (MDAC). The proposed sample and hold amplifier increases the voltage gain using gain boosting for the ADC with high resolution. The proposed pipelined ADC is designed using a 180-nm CMOS process with a supply voltage of 1.8 and it has an effective number of bit (ENOB) of 10.52 bits at sampling rate of 10MS/s for a 1-Vpp differential sinusoidal analog input with frequency of 1 MHz. The measured ENOB is 10.12 bits when the frequency of the sinusoidal analog input signal is a Nyquist frequency of approximately 5 MHz.

Development and Optimization of a Rapid Colorimetric Membrane Immunoassay for Porphyromonas gingivalis

  • Lee, Jiyon;Choi, Myoung-Kwon;Kim, Jinju;Chun, SeChul;Kim, Hong-Gyum;Lee, HoSung;Kim, JinSoo;Lee, Dongwook;Han, Seung-Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.705-709
    • /
    • 2021
  • Porphyromonas gingivalis (P. gingivalis) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer's disease, and rheumatism. Thus, a precise and sensitive test to detect P. gingivalis is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for P. gingivalis. First, we performed a visual membrane immunoassay using 3,3',5,5'-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the P. gingivalis surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103-105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that P. gingivalis could be detected without cross-reactivity to other bacteria, including Streptococcus mutans and Escherichia fergusonii. Furthermore, three clinical strains of P. gingivalis, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for P. gingivalis detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for P. gingivalis.

Development and Wind Speed Evaluation of Ultra High Resolution KMAPP Using Urban Building Information Data (도시건물정보를 반영한 초고해상도 규모상세화 수치자료 산출체계(KMAPP) 구축 및 풍속 평가)

  • Kim, Do-Hyoung;Lee, Seung-Wook;Jeong, Hyeong-Se;Park, Sung-Hwa;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.

Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay (경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Jang, Seok;Jang, Nam-Do;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.337-350
    • /
    • 2010
  • This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

Early Estimation of Rice Cultivation in Gimje-si Using Sentinel-1 and UAV Imagery (Sentinel-1 및 UAV 영상을 활용한 김제시 벼 재배 조기 추정)

  • Lee, Kyung-do;Kim, Sook-gyeong;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.503-514
    • /
    • 2021
  • Rice production with adequate level of area is important for decision making of rice supply and demand policy. It is essential to grasp rice cultivation areas in advance for estimating rice production of the year. This study was carried out to classify paddy rice cultivation in Gimje-si using sentinel-1 SAR (synthetic aperture radar) and UAV imagery in early July. Time-series Sentinel-1A and 1B images acquired from early May to early July were processed to convert into sigma naught (dB) images using SNAP (SeNtinel application platform, Version 8.0) toolbox provided by European Space Agency. Farm map and parcel map, which are spatial data of vector polygon, were used to stratify paddy field population for classifying rice paddy cultivation. To distinguish paddy rice from other crops grown in the paddy fields, we used the decision tree method using threshold levels and random forest model. Random forest model, trained by mainly rice cultivation area and rice and soybean cultivation area in UAV image area, showed the best performance as overall accuracy 89.9%, Kappa coefficient 0.774. Through this, we were able to confirm the possibility of early estimation of rice cultivation area in Gimje-si using UAV image.

Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil;Kim, Min-Suk;Kim, Se-Hoon;Lee, Byung-Ha;Kim, Do-Kyung;Park, Joo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.367-375
    • /
    • 2016
  • A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.

Analysis of the Constructional Components of Chanel Jacket Design (샤넬 재킷 디자인의 구성학적 요소 분석)

  • Choi, Se-Lin;Do, Wol-Hee;Lee, Mi-Suk
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.266-278
    • /
    • 2018
  • This study investigated the transformation of the Chanel jacket by looking at clothing design and constructional components. This study explored Chanel jacket's designs from 2001 S/S to 2016-17 F/W, and collected designs from Samsung Design Net and Vogue. The study used 690 designs with the following results. First, in the silhouette of the Chanel jacket, straight silhouette and hourglass silhouette had the most; in addition, in the length, hip line and under hip line were in order. Second, in case of collar and neckline, the form of a non-collar was the most and revealed the persistence of round neckline which is the basic style of a Chanel jacket. Third, in the shape of sleeves, the loose-fit straight sleeves, wide sleeves, and cocoon sleeves appeared most often. In method of closure, button, zipper were in order, and snaps or without closure appeared. Fourth, in the form of braids, various forms such as twisted yarns, leashes, or lace were used, and patch pockets were mainly used in pockets. Chanel maintains its original design by using various methods. Chanel tried to improve activity and functionality through silhouettes, lengths, necklines, and sleeves. The unchanging expression of the world of Chanel will continue to display and inherit future value. This study can provide Chanel's unique characteristics and new ideas that can transform their origins for jacket design.

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

The effect of the improperly scanned scan body images on the accuracy of virtual implant positioning in computer-aided design software

  • Park, Se-Won;Choi, Yong-Do;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2020
  • PURPOSE. The aim of this study was to examine the importance of the defect-free scanning of a scan body by assessing the accuracy of virtual implant positioning in computer-aided design (CAD) software when the scan body image is improperly scanned. MATERIALS AND METHODS. A scan body was digitized in a dentiform model using an intraoral scanner, and scanned images with differing levels of image deficiency were generated: 5%, 10%, and 15% deficiency in the flat or rounded area. Using a best-fit image matching algorithm on each of the deficient scan body images, corresponding virtual implants were created. The accuracy of the implant position was evaluated by comparing the linear and angular discrepancies between the actual and virtual positions of the implant. Kruskal-Wallis tests and Mann-Whitney U tests with Bonferroni correction were used to determine the statistical differences among the seven scanned image deficiency groups (α=.05). RESULTS. In general, the linear and angular discrepancies of the implant position in the software increased as the deficiency of the scan body images increased. A 15% scan body image deficiency generated larger discrepancies than deficiency of 5% and 10%. The difference of scan defect position, flat or rounded area, did not affect the accuracy of virtual implant orientation at 5% and 10% deficiency level, but did affect the accuracy at 15% deficiency level. CONCLUSION. Deficiencies in the scanned images of a scan body can decrease the accuracy of the implant positioning in CAD software when the defect is large, thus leading to the incorrect fabrication of implant prostheses.

An Empirical Analysis on Correlation between Carbon Emission and Urban Spatial Structure (도시공간구조와 탄소배출량간 상관관계 실증 분석)

  • Ryu, Yoon-Jin;Sohn, Se-Hyoung;Kim, Do-Nyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.273-281
    • /
    • 2012
  • The government is carrying forward a sustainable development which reduces green-house gas and environmental pollution by preparing 'Low Carbon Green Development' policy basis as a new paradigm of national development. This study aims to understand the status of atmosphere contamination which Seoul has by finding correlation among social, economical indexes and carbon, the humanities and social characteristic materials which best express types of city and correlation and to suggest implications. According to the results of the analysis, first the carbon emission volume of Seoul recorded 0.56 ppm, Jongno, Jung-Gu, Kuro, Kangnam and Songpa were more than the average of Seoul and Kwangjin-Gu & Kangbuk-Gu, relative north east regions, Yeongdeungpo-Gu and Dongjak-Gu, south west regions showed lower CO occurrences. Second, according to the correlation and factor analysis, elements which affect CO emission volume of Seoul are largely represented by regional level, traffic level and development density level. Third, when the importance of influence factors based on the analyzed standard coefficient by a regression model, traffic and development density level were most important by recording traffic level (0.967), environmental level (0.385), regional level (0.530) and development density (0.561). Consequently, it was revealed that the traffic level most affected CO emission.