• Title/Summary/Keyword: $D[X]/(X^n)$

Search Result 1,370, Processing Time 0.025 seconds

PRECISE RATES IN THE LAW OF THE LOGARITHM FOR THE MOMENT CONVERGENCE OF I.I.D. RANDOM VARIABLES

  • Pang, Tian-Xiao;Lin, Zheng-Yan;Jiang, Ye;Hwang, Kyo-Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.993-1005
    • /
    • 2008
  • Let {$X,\;X_n;n{\geq}1$} be a sequence of i.i.d. random variables. Set $S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$. Then we obtain that for any -1$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$ if and only if EX=0 and $EX^2={\sigma}^2<{\infty}$.

The Study of the Equation $(x+1)^d=x^d+1$ over Finite Fields (유한체위에서 방정식 $(x+1)^d=x^d+1$에 대한 연구)

  • Cho, Song-Jin;Kim, Han-Doo;Choi, Un-Sook;Kwon, Sook-Hee;Kwon, Min-Jeong;Kim, Jin-Gyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.237-240
    • /
    • 2012
  • Binary sequences of period $N=2^k-1$ are widely used in many areas of engineering and sciences. Some well-known applications include code-division multiple-access (CDMA) communications and stream cipher systems. In this paper, we analyze the equation $(x+1)^d=x^d+1$ over finite fields. The $d$ of the equation is used to analyze cross-correlation of binary sequences.

  • PDF

CONTINUOUS DERIVATIONS OF NONCOMMUTATIVE BANACH ALGEBRA

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.319-327
    • /
    • 2000
  • In this paper we investigate the conditions for derivations under which the Singer-Wermer theorem is true for noncommutative Banach algebra A such that either [[D(x),xD(x)] ${\in}$ rad(A) for all $x{\in}$A or $D(x)^2$x+xD(x))$^2$${\in}$rad(A) for all $x{\in}$A, where rad(A) is the Jacobson radical of A, then $D(A){\subseteq}$rad(A).

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

b-GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS IN PRIME RINGS

  • Dhara, Basudeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.573-586
    • /
    • 2018
  • Let R be a noncommutative prime ring of characteristic different from 2, Q be its maximal right ring of quotients and C be its extended centroid. Suppose that $f(x_1,{\ldots},x_n)$ be a noncentral multilinear polynomial over $C,b{\in}Q,F$ a b-generalized derivation of R and d is a nonzero derivation of R such that d([F(f(r)), f(r)]) = 0 for all $r=(r_1,{\ldots},r_n){\in}R^n$. Then one of the following holds: (1) there exists ${\lambda}{\in}C$ such that $F(x)={\lambda}x$ for all $x{\in}R$; (2) there exist ${\lambda}{\in}C$ and $p{\in}Q$ such that $F(x)={\lambda}x+px+xp$ for all $x{\in}R$ with $f(x_1,{\ldots},x_n)^2$ is central valued in R.

ON ALMOST PSEUDO-VALUATION DOMAINS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.343-349
    • /
    • 2011
  • Let D be an integral domain, $D^w$ be the $w$-integral closure of D, X be an indeterminate over D, and $N_v=\{f{\in}D[X]{\mid}c(f)_v=D\}$. In this paper, we introduce the concept of $t$-locally APVD. We show that D is a $t$-locally APVD and a UMT-domain if and only if D is a $t$-locally APVD and $D^w$ is a $PvMD$, if and only if D[X] is a $t$-locally APVD, if and only if $D[X]_{N_v}$ is a locally APVD.

REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS

  • BERKAL, M.;BEREHAL, K.;REZAIKI, N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.409-431
    • /
    • 2022
  • In this paper, we deal with the existence of solutions of the following system of nonlinear rational difference equations with order five $x_{n+1}=\frac{y_{n-3}x_{n-4}}{y_n(a+by_{n-3}x_{n-4})}$, $y_{n+1}=\frac{x_{n-3}y_{n-4}}{x_n(c+dx_{n-3}y_{n-4})}$, n = 0, 1, ⋯, where parameters a, b, c and d are not executed at the same time and initial conditions x-4, x-3, x-2, x-1, x0, y-4, y-3, y-2, y-1 and y0 are non zero real numbers.

THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n$+a(x,y)z+b(x,y)=0 in $C^3$ AND ITS APPLICATION

  • Kang, Chung-Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.169-173
    • /
    • 1989
  • Let V={(x,y,z):f=z$^{n}$ -npz+(n-1)q=0 for n .geq. 3} be a compled analytic subvariety of a polydisc in $C^{3}$ where p=p(x,y) and q=q(x,y) are holomorphic near (x,y)=(0,0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is D(f)=c(p$^{n}$ -q$^{n-1}$) for some number c. Suppose that D(f) is square-free. then we prove that by Theorem 2.1 .mu.(p$^{n}$ -q$^{n-1}$)=.mu.(f)-(n-1)+n(n-2)I(p,q)+1 where .mu.(f), .mu. p$^{n}$ -q$^{n-1}$are the corresponding Milnor numbers of f, p$^{n}$ -q$^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that W$_{t}$ ={(x,y,z):g$_{t}$ =z$^{n}$ -np$_{t}$ $^{n-1}$z+(n-1)q$_{t}$ $^{n-1}$=0} is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g$_{t}$ , that is, D(g$_{t}$ ) is square-free. If .mu.(g$_{t}$ ) are constant near t=0, then we prove that the family of plane curves, D(g$_{t}$ ) are equisingular and also D(f$_{t}$ ) are equisingular near t=0 where f$_{t}$ =z$^{n}$ -np$_{t}$ z+(n-1)q$_{t}$ =0.}$ =0.

  • PDF

Analysis of Optimum Impedance for X-Band GaN HEMT using Load-Pull (로드-풀을 이용한 X-Band GaN HEMT의 최적 임피던스 분석)

  • Kim, Min-Soo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.621-627
    • /
    • 2011
  • In this paper, we analysed performance for on-wafer GaN HEMT using load-pull in X-band, and studied optimum impedance point based on analysis result. We suggested method of optimum performance device by analysis of optimum impedance for solid state device on-wafer condition before packaging. The measured device is gate length 0.25um, and gate width is 400um, 800um. device 400um is performed $P_{sat}$=33.16dBm, PAE=67.36%, Gain=15.16dBm, and device 800um is performed $P_{sat}$=35.91dBm, PAE=69.23%, Gain=14.87dBm.