• Title/Summary/Keyword: $Cu^{2+}$ Complex

Search Result 458, Processing Time 0.022 seconds

Polarographic Behaviors of Copper and Cadmium Complexes with 2,2'-Bipyridine and Ethylenediamine in Acetonitrile (아세토니트릴에서 구리와 카드뮴의 2,2'-Bipyridine과 Ethylenediamine 착물에 대한 폴라로그래프적 연구)

  • Park, Du Won;Lee Heung Lark;Bae Zun Ung
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.202-209
    • /
    • 1974
  • Polarographic behaviors of copper and cadmium complexes with 2,2'-bipyridine and ethylenediamine in acetonitrile have been investigated by the DC and AC polarography. The reduction processes are estimated as follows; $Cu(II)-bipy. \;complex\;{\longrightarrow^{e^-}_{E_{1/2}\risingdotseq+0.1V}}\;Cu(I)-bipy.\;complex\;{\longrightarrow^{e^-}_{E_{1/2}=-0.43V}}\;Cu(Hg)$$Cu(II)-en.\;complex\;{\longrightarrow^{e^-}}\;Cu(I)-en.\;complex\;{times}\;{\longrightarrow^{e^-}_{E_{1/2}=-0.56V}}\;Cu(Hg)$$Cu(II)-bipy. \;complex\;{\longrightarrow^{e^-}_{E_{1/2}=-0.57V}}\;Cu(I)-bipy.\;complex\;{\longrightarrow^{2e^-}_{E_{1/2}=-0.97V}}\;Cd(I)-bipy\;complex$$Cu(II)-en.\;complex\;{\longrightarrow^{e^-}_{E_{1/2}=+0.05V}\;Cu(I)-en.\;complex{\longrightarrow^{e^-}_{E_{1/2}=-0.92V}}\;Cu(Hg)$ The limiting currents of all steps are controlled by diffusion. The number of ligand and the dissociation constant for Cu(Ⅰ)-bipy. complex were found to be n = 2 and $K_d=(1.5{\pm}0.1){\times}10^{-7}$, respectively.

  • PDF

Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots

  • Hong Nhung Nguyen;Phuoc Tho Tran;Nghiem Anh Tuan Le;Quoc Hien Nguyen;Duy Du Bui
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.261-271
    • /
    • 2024
  • Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CS-Cu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Structural Analysis of Cu Binding Site in [Cu(I)·d(CpG)·d(CpG)-2H]-1 Complex

  • Im, Yu-Jin;Jung, Sang-Mi;Kang, Ye-Song;Kim, Ho-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1232-1236
    • /
    • 2013
  • The Cu cation binding sites of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex have been investigated to explain the $[Cu{\cdot}DNA]$ biological activity caused by the Cu association to DNA. The structure of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex was investigated by electrospray ionization mass spectrometry (ESI-MS). The fragmentation patterns of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex were analyzed by MS/MS spectra. In the MS/MS spectra of $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex, three fragment ions were observed with the loss of d(CpG), {d(CpG) + Cyt}, and {d(CpG) + Cyt + dR}. The Cu cation binds to d(CpG) mainly by substituting the $H^+$ of phosphate group. Simultaneously, the Cu cation prefers to bind to a guanine base rather than a cytosine base. Five possible geometries were considered in the attempt to optimize the $[Cu(I){\cdot}d(CpG){\cdot}d(CpG)-2H]^{-1}$ complex structure. The ab initio calculations were performed at B3LYP/6-31G(d) level.

Study on the Cu/Polyimide interface using XPS: Initial growth of Cu sputter-deposited on the polyimide at high temperature (II) (XPS를 이용한 Cu/Polyimide의 계면에 관한 연구: 고온에서 증착한 Cu의 초기성장과 정(II))

  • 이연승;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • We investigated the initial growth mode of Cu deposited on polyimide at high temperature($350^{\circ}C$) using x-ray photoelectron spectroscopy. We could find that when Cu is sputter-deposited on the polyimide at high temperature, Cu-C-N complex is formed first, Cu-N-O complex and Cu-oxide are mainly formed successively, and then funally metallic Cu grows. In the chemical reaction point of view, the interface of Cu/polyimide at high temperature is than that at room temperature.

  • PDF

Structural Analysis and Single-Crystal EPR Study of Dimeric Cu(I) Complex with TTF Derivative

  • Kwon, Sun-Young;Seo, Young-Joo;Lee, Yang-Joo;Noh, Dong-Youn;Lee, Hong-In
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.86-95
    • /
    • 2004
  • A Cu(I) complex with an asymmetric TTF derivative (CET-EDTTTF) is prepared from the slow-diffusion method using CET-EDTTTF and Cu(I)Br solutions and characterized by X-ray crystallography and EPR spectroscopy. Structural analysis shows Cu(I) ions are tetrahedrally coordinated to two bridging bromides, one terminal bromide, and one S atom from CET-EDTTTF. Detailed geometrical and EPR analysis identified that the dimmer molecule contains [Cu$_2Br_4]^{2-}$ anion between two [CET-EDTTTF]$^+$ radical cations. Single-crystal EPR investigation of the complex reveals that the ganisotropy is unusually big, compared to those of the previously reported TTF+ cation radicals, implying that there is significant contribution of the Cu d-orbital to the HOMO of the complex.

  • PDF

Synthesis of High Tc Superconductor YBa2Cu3O7-$\delta$ by Oxalate Coprecipitation Method II. The Effect of Cu2+-Oxalate-Complex Formation for the Solubilities of Y3+ and Ba2+ (Oxalate공침법에 의한 고온 초전도체 YBa2Cu3O7-$\delta$의 합성 II. Cu2+-Oxalate-Complex가 Y3+ 및 Ba2+의 용해도에 미치는 영향)

  • 최진호;김배환;최규원
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.395-401
    • /
    • 1989
  • The concentrations of Cu(II), Y(III) and Ba(II) ionic species in aqueous solution due to the formation of Cu2+-oxalate-complex have been theoretically calculated with respect to pH and their solubility diagrams could be obtained. It was verified from the calculation that the excess of Cu2+ and Ba2+ should be added in order to obtain oxalate coprecipitates with the molar ratio of Y : Ba : Cu=1 : 2 : 3. The exact amount of excess species has been calculated with respect to the initial concentrations of metal ions and pH.

  • PDF

Polarographic Behavior of Cadmium (II) and Copper (II) Complexes of 1,5-Diphenylcarbohydrazide in Dimethylsulfoxide (디메틸술폭시드 속에서 1,5-디페닐카르보히드라지드의 카드뮴 (II) 및 구리 (II) 착물에 대한 폴라로그래피적 거동)

  • Chil-Nam Choe
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • Polarographic behavior of cadmium(II) and copper (II) complexes of 1,5-diphenylcarbohydrazide in dimethylsulfoxide have been investigated by the DC polarography. The reduction processes are estimated as follows; Cd(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.12V)}$${\to}$Cd(I)${\cdot}$DPH Complex. Cd(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.74V)}$${\to}$Cd(Hg) + nDPH. Cu(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.44V)}$${\to}$Cu(I)${\cdot}$DPH Complex. Cu(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.84V)}$${\to}$Cu(Hg) + nDPH. The limiting currents of all reduction wave are irreversible. The number of ligand and the dissociation constant for Cu(I)${\cdot}$1.5-diphenylcarbohydrazide complex were found to be 2 and 5.12 ${\times}10^{-8}$, respectively. All reduction waves of complexes are irreversible. Based on the experimental results, the polarographic reductions of complexes in dimethylsulfoxide solution occurred in two one-electron steps.

  • PDF

A Study on the Decomposition of DFP using Cu(II)-Chitosan Complex (Cu(II)-Chitosan Complex의 DFP 분해 반응 연구)

  • Kye, Young-Sik;Chung, Woo Yong;Kim, Dongwook;Park, Yangki;Song, Siuk;Jeong, Keunhong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.699-704
    • /
    • 2012
  • In this study, we have proposed a novel decomposition agent composed of Cu(II) and soluble chitosan for organophosphorus chemical agents. Compared to the autohydrolysis, the soluble Cu(II)-Chitosan complex hydrolyzed DFP more effectively. Results show that soluble Cu(II)-Chitosan complex enhances the hydrolysis of DFP in 4~6 folds compared to the autohydrolysis of DFP in buffer solution. This study provides the possibility of using this soluble Cu(II)-Chitosan complex as the environmental friendly decomposition agent which can substitute current DS-2 decomposition agent.