• Title/Summary/Keyword: $Cu(OH)_{2}$

Search Result 766, Processing Time 0.035 seconds

A Study of the Structure and Thermal Property of $Cu^{2+}\;and\;NH_{4}{^+}$ Ion-Exchanged Zeolite A

  • Park, Jong-Yul;Kang, Mi-Sook;Choi, Sang-Gu;Kim, Yang;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.341-346
    • /
    • 1994
  • The frameworks of $(Cu(NH_3)_3OH^+)_x(NH_4^+)_{12-x}-A{\cdot} zH_2O$ which were prepared by the ion-exchange of zeolite A with ammoniac cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution. An energetic calculation was made on the relatively stable $(CuOH^+)_2(NH_4^+)_{10}-A{\cdot} 2H_2O$ prepared by the partial evacuation of $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$. The mean stabilization energies of water, OH-, and $NH_4^+$ ions are -30.23 kcal/mol, -60.24 kcal/mol, and -16.65 kcal/mol, respectively. The results of calculation were discussed in terms of framework stability. The $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$ zeolite shows two step deammoniation reactions. The first deammoniation around 210 $^{\circ}$C (third DSC peak) was attributed to the decomposition of $[Cu(NH_3)_3OH^+]$ ion and the second one around 380 $^{\circ}$C (fourth DSC peak) was ascribed to the decomposition of $NH_4^+$ ion. The activation energies of the first and second deammoniation reactions were 99.75 kJ/mol and 176.57 kJ/mol, respectively.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Fractionation and Availability of Cu and Zn in Paddy Soils Following a Long-Term Applications of Soil Amendments (토양개량제를 장기연용한 논토양에서 구리와 아연의 분획화 및 유효도)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Yeon, Beong-Yeal;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • We investigated the effects of a long term application of soil amendments such as lime, silicate, compost, or combinations of these materials on the contents of Cu and Zn in paddy soil and brown rice. The results obtained from a sequential extraction of Cu and Zn in paddy soils and brown rice, using $H_2O$, $KNO_3$, $Na_2$-EDTA and $HNO_3$ and showed that the most of Cu and Zn were NaOH-extractable (organically bound form) and $HNO_3$-extractable (sulfide and residual form). Cu contents of NaOH and EDTA extractable increased with the long term application of compost while the contents of Zn extracted by $KNO_3$ was decreased even though $HNO_3$ extractable-Zn was prominent chemical form in paddy soils. The percentage and contents of Zn, extracted by $KNO_3$ for each combination treatment of soil amendments, was decreased but the contents of Cu was not affected. The content of NaOH extractable-Cu was proportionally increased with increase in organic matter content irrespective of the extractants used in this experiment. The contents of Zn and exchangeable K were also increased with increase in organic matter content. However, we could not find any relationship between the extractable forms of Cu and Zn, and CEC, OM. while increase in CEC, contents of cations, and organic matter decreased the content of Cu in brown rice.

  • PDF

The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts

  • Park, Seong-Hun;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.768-772
    • /
    • 2013
  • Layered mixed metal hydroxy double salts (HDS) with the formulas $(Cu_{0.75}Ni_{0.25})_2(OH)_3NO_3$ ((Cu, Ni)-HDS) and $Cu_2(OH)_3NO_3$ ((Cu, Cu)-HDS) were prepared via slow hydrolysis reactions of CuO with $Ni(NO_3)_2$ and $Cu(NO_3)_2$, respectively. The crystal structures, morphologies, bonding natures, and magnetic properties of (Cu, Ni)-HDS and (Cu, Cu)-HDS were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a superconducting quantum interference device (SQUID). Even though (Cu, Ni)-HDS has a similar layered structure to that of (Cu, Cu)-HDS, the bonding nature of (Cu, Ni)-HDS is slightly different from that of (Cu, Cu)-HDS. Therefore, the magnetic properties of (Cu, Ni)-HDS are significantly different from those of (Cu, Cu)-HDS. The origin of the abnormal magnetic properties of (Cu, Ni)-HDS can be explained in terms of the bonding natures of the interlayer and intralayer structures.

Cu Filling Characteristics of Trench Vias with Variations of Electrodeposition Parameters (Electrodeposition 변수에 따른 Trench Via의 Cu Filling 특성)

  • Lee, Kwang-Yong;Oh, Teck-Su;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.57-63
    • /
    • 2006
  • For chip-stack package applications, Cu filling characteristics into trench vias of $75{\sim}10\;{\mu}m$ width and 3 mm length were investigated with variations of electroplating current density and current mode. At $1.25mA/cm^{2}$ of DC mode, Cu filling ratio higher than 95% was obtained for trench vias of $75{\sim}35{\mu}m$ width. When electroplated at DC $2.5mA/cm^{2}$, Cu filling ratios became inferior to those processed at DC $1.25mA/cm^{2}$. Pulse current mode exhibited Cu filling characteristics superior to DC current mode.

  • PDF

Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid (Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합)

  • Hong, Junsung;Lee, Jung-Hoon;Oh, You-Na;Cho, Kwang-Jun;Riu, Doh-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

Chemical Equilibria of Lanthanide {Ln(III)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Auxiliary Ligands in $CH_3OH$(Part III); Study of the Coordination of Nitrogen-or Oxygen-Containing Bases ($CH_3OH$ 용매에서 란탄족 원소 {Ln(III)=Pr, Sm, Gd, Dy}-거대고리 착물과 보조리간드 간의 화학평형(제3보); 두자리 리간드(주게원자:N혹은 O)를 중심으로 고찰)

  • Byun, Jong-Chul;Park, Yu-Chul;Han, Chung-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Macroacyclic transition metal complexes such as $Cu(H_2L[A]).H_2O$, $Cu(H_2L[B]).H_2O$, CuFe(L[A]($NO_3$).$4H_2O$, CuFe(L[B])($NO_3$).$4H_2O$, [$CuGd(H_2L[A])(NO_3)_2](NO_3).2CH_3OH$, [CuGd($H_2L$[B])($NO_3)_2$]($NO_3).2CH_3OH were prepared from the corresponding hexadentate compartmental ligands, $H_4L[A]$ and $H_4L[B]$, which were obtained by the condensation of 2-hydroxy-3-hydroxymethy1-5-methyIbenzaldehyde(HHNNB) and ethylenediamine or l,3-diaminopropane. Ln-macrocyclic([20]DOTA) complexes,[Ln([20]DOTA)($NO_3)(H_2O)$]($NO_3$)2.$xH_2O${Ln(III)=Pr, Sm, Gd, Dy, which had been synthesized from 2,6-diformyl-p-cresol(DFPC), was placed in methanol for 2 days, and [Ln([20] DOTA)($NO_3)(CH_3OH)]^{2+}$ was formed The equilibrium constants (k) for the substitution of coordinated $CH_3OH$ in the Ln-[20]DOTA complexes by various bidentate auxiliary ligands, $L_a$(=o-phenylenediamine,1,10-phenanthroline, ethylenediamine,oxalicacid, malonic acid, acethylacetone) were determined by spectroscopic method at $25^{\circ}C$ and 0.1M $NaClO_4$.The pKa of auxiliary ligands is in the order of o-phenylenediamine < 1,10-phenanthroline < ethylene-diamine, oxalic acid < malonic acid < acethylacetone. However, the equilibrium constant(K) has shown thetrend of ethyleneiamine < 1,10-phenanthroline < o-phenylenediamine, acethylacetone < malonic acid < oxalic acid.

  • PDF

Effect of Cu Species Distribution in Soil Pore Water on Prediction of Acute Cu Toxicity to Hordeum vulgare using Terrestrial Biotic Ligand Model (토양 공극수 내 Cu의 존재형태가 terrestrial biotic ligand model을 이용한 보리의 급성독성 예측에 미치는 영향)

  • An, Jinsung;Jeong, Buyun;Lee, Byungjun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.30-39
    • /
    • 2017
  • In this study, the predictive toxicity of barley Hordeum vulgare was estimated using a modified terrestrial biotic ligand model (TBLM) to account for the toxic effects of $CuOH^+$ and $CuCO_3(aq)$ generated at pH 7 or higher, and this was compared to that from the original TBLM. At pH values higher than 7, the difference in $EA_{50}\{Cu^{2+}\}$ (half maximal effective activity of $Cu^{2+}$) between the two models increased with increasing pH. As Mg concentration increased from 8.24 to 148 mg/L in the pH range of 5.5 to 8.5, the difference in $EA_{50}\{Cu^{2+}\}$ increased, and it reached its maximum at pH 8. The difference in $EC_{50}[Cu]_T$ (half maximal effective concentration of Cu) between the two models increased as dissolved organic carbon (DOC) concentration increased when pH was above 7. Thus, for soils with alkaline pH, the toxic effect of $CuOH^+$ and $CuCO_3(aq)$ are greater at higher salt and DOC concentrations. The acceptable Cu concentration in soil porewater can be estimated by the modified TBLM through deterministic method at pH levels higher than 7, while combination of TBLM and species sensitivity distribution through the probabilistic method could be utilized at pH levels lower than 7.

Efficacy of Cu(II) Adsorption by Chemical Modification of Pine Bark (소나무 수피의 화학적 처리에 의한 Cu(II) 흡착 효과)

  • Park, Se-Keun;Kim, Ha-Na;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.930-937
    • /
    • 2007
  • Korean pine(Pinus densiflora) bark was evaluated for its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled barks were treated with 1 N NaOH or 1 N HCl to examine the effect of surface modification. For comparison, untreated bark was tested under same condition. Within the tested pH range between 3 and 6, NaOH treatment increased Cu(II) adsorption capacity by $139\sim184%$, while HCl treatment decreased it by $37\sim42%$. Maximum copper ion uptake by bark was observed at pH $5\sim6$, but pH of solution was not a potent influence. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto bark. For NaOH-treated bark, the calculated sorption capacity$(q_e)$ increased from 6.58 to 12.77 mg/g, while the equilibrium rate constant$(k_2)$ decreased from 0.284 to 0.014 g/mg/min as initial Cu(II) concentration doubled from 100 mg/L. A batch isotherm test using NaOH-treated bark showed that equilibrium sorption data were represented by both the Langmuir model and the Freundlich model. It was confirmed that carboxylic acid of bark was involved in the Cu(II) adsorption. For NaOH-treated bark, in particular, carboxylate ion produced by hydrolysis or saponification appeared to be a major functional roup responsible for the enhanced Cu(II) sorption.