• Title/Summary/Keyword: $Cr_2N$ nitride

Search Result 53, Processing Time 0.023 seconds

Computer Simulation for the Growth of Cr-nitride Formed on Electroplated Cr during ion-Nitriding (이온 질화에 의해 크롬 도금 층 위에 형성된 크롬 질화물의 성장에 관한 전산 모사)

  • 엄지용;이병주;남기석;권식철;권혁상
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • The structure and composition of Cr-nitrides formed on an electroplated hard Cr layer during an ionnitriding process was analyzed, and the growth kinetics of the Cr-nitrides was examined as a function of the ion-nitriding temperature and time in order to establish a computer simulation model prediction the growth behavior of the Cr-nitride layer. The Cr-nitrides formed during the ion-nitriding at $550~770^{\circ}C$ were composed of outer CrN and inner $Cr_2$N layers. A nitrogen diffusion model in the multi-layer based on fixed grid FDM (Finite Difference Method) was applied to simulate the growth kinetics of Cr-nitride layers. By measuring the thickness of each Cr-nitride layer as a function of the ion-nitriding temperature and time, the activation energy for growth of each Cr-nitride was determined; 82.26 KJ/mol for CrN and 83.36 Kj/mol for $Cr_2$N. Further, the nitrogen diffusion constant was determined in each layer; $9.70$\times$10^{-12}$ /$m^2$/s in CrN and $2.46$\times$10^{-12}$ $m^2$/s in $Cr_2$N. The simulation on the growth kinetics of Cr-nitride layers was in good agreements with the experimental results at 550~72$0^{\circ}C$.

  • PDF

Characteristics of Chromiun Nitride Thin-film Strain Guges (크로질화박막 스트레인 게이지의 특성)

  • Chung, Gwiy-Sang;Kim, Gil-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.134-138
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$nd annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

A comparative study of electrochemical properties in CrN films prepared by inductively coupled plasma magnetron sputtering (유도결합형 플라즈마 마그네트론 스피터로 제작된 CrN 코팅막의 전기화학적 물성 비교 연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we compared the properties of the chromium nitride (CrN) films prepared by inductively coupled plasma magnetron sputtering (ICPMS). As a comparison, CrN film prepared by a direct current magnetron sputtering (dcMS) is also studied. The crystal structure, surface and cross-sectional microstructure and composite properties of the as-deposited CrN films are compared by x-ray diffraction, field emission scanning electron microscopy, nanoindentation tester and corrosion resistance tester, respectively. It is found that the as-deposited CrN films by ICPMS grew preferentially on (200) plane when compared with that by dcMS on (111) plane. As a result, the films deposited by ICPMS have a very compact microstructure with high hardness: the nanoindentation hardness reached 19.8 GPa and 13.5 GPa by dcMS, respectively. Besides, the residual stress of CrN films prepared by ICPMS is also relatively large. After measuring the corrosion resistance, the corrosion current of films prepared by ICPMS was three order of magnitude smaller than that of CrN films deposited by dcMS.

Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향)

  • Ho-Seong Heo;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

The Fabrication of Chromium Nitride Thin-Film Type Pressure Sensors for High Pressure Application and Its Characteristics (고압용 코롬질화박막형 압력센서의 제작과 그 특성)

  • 정귀상;최성규;서정환;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.470-474
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pressure sensors, in which the sensing elements were deposited on SuS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500$\AA$ and annealing condition(300$\^{C}$, 3 hr) in Ar-10%N$_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, ρ=1147.65 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=186ppm/$\^{C}$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20nA and the maximum non-linearity is 0.4%FS and hysteresis is less than 0.2%FS.

  • PDF

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성])

  • Son, D.U.;Lee, H.H.;Seong, J.H.;Park, K.S.;Kim, C.K.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF

Investigation of the TiCrN Coating Deposited by Inductively Coupled Plasma Assisted DC Magnetron Sputtering. (Inductively Coupled Plasma Assisted D.C. Magnetron Sputtering법으로 제작된 TiCrN 코팅층의 특성 분석)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.267-274
    • /
    • 2009
  • Titanium Chromium Nitrided (TiCrN) coatings were deposited on stainless steel 316 L and Si (100) wafer by inductively coupled plasma assisted D.C. magnetron sputtering at the various sputtering power on Cr target and $N_2/Ar$ gas ratio. Increasing the sputtering power of Cr target, XRD patterns were changed from TiCrN to nitride $Cr_2Ti$. The maximum hardness was $Hk_{3g}$ 3900 at $0.3\;N_2/Ar$ gas ratio. The thickness of the TiCrN films increased as the Cr target power increased, and it showed over $Hk_{5g}3100$ hardness at 100 W, 150 W. TiCrN films were deposited by the ICP assisted DC magnetron sputtering shown good wear resistance as the $N_2/Ar$ gas ratio was 0.1, 0.3.

Fabrication of High-sensitivity Thin-film Type Strain-guges (고감도 박막형 스트레인 게이지의 제작)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.135-141
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by OC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$ and annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF