• Title/Summary/Keyword: $Cl^-$ current

Search Result 809, Processing Time 0.03 seconds

Properties of Surface Electrical Conduction in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도특성)

  • 박영국;강성화;정수현;이운석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

Evaluation of Electrospun TiO2/PVP/LiCl Nanofiber Array for Humidity Sensing (전기방사를 이용한 TiO2/PVP/LiCl 나노섬유 습도 센서의 제작과 평가)

  • Ryu, Hyobong;Kim, Bumjoo;Kwon, Hyukjin Jean;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Recently, tremendous application utilizing electrospun nanofibers have been actively reported due to its several advantages, such as high surface to volume ratio, simple fabrication and high-throughput manufacturing. In this paper, we developed highly sensitive and consistent nanofiber humidity sensor by electrospinning. The humidity sensor was fabricated by rapid electrospinning (~2 sec) $TiO_2$/PVP/LiCl mixed solution on the micro-interdigitated electrode. In order to evaluate the humidity sensing performances, we measured current response using DC bias voltage under various relative humidity levels. The results show fast response / recovery time and marginal hysteresis as well as long-term stability. In addition, with the aid of micro-interdigitated electrode, we can reduce a total resistance of the sensor and increase the total reaction area of nanofibers across the electrodes resulting in high sensitivity and enhanced current level. Therefore, we expect that the electrospun nanofiber array for humidity sensor can be feasible and promising for diverse humidity sensing application.

Study on Bubble Generation and Size by Dimensionally Stable Anode in Electroflotation Process (전기부상공정에서 촉매성 산화물 전극에 따른 기포 발생량과 크기에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • Small gas bubbles are used in many environmental and industrial processes for solid-liquid separations or to facilitate heat and mass transfer between phases. This study examines some of the factors that affect the bubble volume and size processed in the EF (electroflotation) process. The effect of electrode material, NaCl dosage, current and electrode distance were studied. The results showed that the generated bubble volume with electrode material lay in: Pt/Ti ${\fallingdotseq}$ Ru/Ti ${\fallingdotseq}$ Ir/Ti > Ti electrode. The more NaCl dosage was high, the smaller bubble was generated due to the low electric power. Bubble generation was increased with increase of current. With the increase of NaCl dosage, bubble generation was increased at same electric power (16.2 W). Generated bubble volume was not affected by electrode distance. However, no clear trends in bubble size as a function of these parameters were evident.

Dry etching of polysiliconin high density plasmas of $CI_2$ (고밀도 플라즈마를 사용한 $CI_2$/ Poly-Si 건식 식각)

    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 1999
  • The characteristic parameters of high density plasma source (Helical Resonator) have been measured with Langmuir probe to get the plasma density electron temperature, ion current density, etc. Optical emission spectra of Si and SiCl have been analyzed in $Cl_2$$/poly-Si system to elucidate etching mechanism. In this system, the main reaction to remove silicon atoms on the surface is proceeding mostly through chemical reaction, not pure physical reaction. The emission intensity of SiCl (chemical etching product) increases much faster than Si (pure physical etching product) with increasing the concentration of impurities (P). This is due to the electron transfer from substrate to the surface via Si-Cl bond. As a result, Si-Cl bond becomes more ionic and mobile, therefore the Cl-containing etchant forms $SiCl_x$ with surface more easily. Consequently, for the removal of Si atom from poly silicon surface, the chemical etching is more favorable than physical etching with increasing P concentrations.

  • PDF

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution (NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향)

  • Kim, E.S.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

Electrochemical Properties of Langmuir-Blodgett(LB) Monolayer Films of Alkyl Bromides Mixture (브롬화 알킬혼합물 단분자 LB막의 전기화학적 특징)

  • Son, Tae-Chul;Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • We investigated the electrochemical properties for Langmuir-Blodgett(LB) films mixed with l-bromotetradecane(Cl4), l-bromohexadecane(Cl6), and l-bromooctadecane(Cl8). The alkyl bromides mixture was deposited by using the Langmuir-Blodgett method on the ITO glass. The electrochemical properties measured by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, 1.5 and 2.0 N) of $NaClO_4$ solution. A measuring range was reduced from initial potential to -1350 m V, continuously oxidized to 1650 mV. The scan rate was 100 mV/s. As a result, LB films of Cl4, Cl6, and Cl8 mixture monolayers appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl bromides amount.

CASPT2 Study on the Low-lying Electronic States of 1,3,5-C6H3Cl3+ Ion

  • Yu, Shu-Yuan;Zhang, Cheng-Gen;Wang, Shu-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1511-1515
    • /
    • 2014
  • The multiconfiguration second-order perturbation theory (CASPT2) and complete active space self-consistent field (CASSCF) methods were employed to calculate the geometries and energy levels for the low-lying electronic states of 1,3,5-$C_6H_3Cl{_3}^+$ ion. The CASPT2 values for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were in reasonable agreement with the available experimental values. The current calculations augmented previous theoretical investigations on the ground state and assigned the low-lying excited electronic states of the 1,3,5-$C_6H_3Cl{_3}^+$ ion. The Jahn-Teller distortion in the excited electronic state for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were reported for the first time.

Properties of the Pt Thin Etching in $BCI_3/CI_2$gas by Inductive Coupled Plasma (ICP에 의한 $BCI_3/CI_2$플라즈마 내에서 Pt 박막의 식각 특성)

  • 김창일;권광후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.804-808
    • /
    • 1998
  • The inductively coupled plasma(ICP) etching of platinum with BCl$_3$/Cl$_2$ gas chemistry has been studied. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical binding states of the etched surface. The plasma characteristics was extracted from optical emission spectroscopy (OES) and a single Langmuir probe. In this case of Pt etching using BCl$_3$/Cl$_2$ gas chemistries, the result of OES and Langmuir probe showed the increase of Cl radicals and ion current densities in the plasmas with increasing Cl$_2$ gas ratio. At the same time, XPS results indicated that the intensities of Pt 4f decreased with increasing Cl$_2$ gas ratio. The decrease of Pt 4f intensities implies the increase of residue layer thickness on the etched Pt surface.

  • PDF

Electronic Spectroscopy and Structure of CLF

  • Vadim A. Alekseev;D. W. Setser
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2000
  • Optical-optical double resonance experiments have been used to identify and characterize five ion-pair states and several of the bound and repulsive valence states of ClF. This report provides a description of these experiments for $^{35}CIF$ and $^{37}CIF$, and a summary of the current knowledge of the valence and ion-pair states. The important role of perturbations among the rovibronic levels of the bound valence states and their utilization in the double resonance technique is discussed. The ion-pair states of the same symmetry, ${\Omega}$=$0^+$ (E and f) and 1( $\beta$ and G) interact very strongly and the spectroscopy of these states is anomalous and, hence, interesting. Comparison is made to some recent ab initio calculations for ClF. One possible explanation of the irregular vibrational energy levels and rotational constants of the ion-pair states of $O^+$ and 1 symmetry is a crossing of the diabatic potentials of these states. Some currently unresolved questions about ClF spectroscopy are posed for future work. Where appropriate, analogy is made between the electronic states of ClF and the corresponding valence and ion-pair states of $Cl_2.$.

A Study on the Separation of Electrolyte from Amino Acid Solution through Electrodialysis (전기투석법을 이용한 아미노산으로부터 전해질 분리정제에 관한 연구)

  • 김석곤;한정우;김한성;전경용;조영일
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.163-170
    • /
    • 1994
  • The separation of inorganic salt from amino acid solution using was performed electrodialysis. In order to review the availability of electrodialysis using isoelectric point of amino acid as a bio-separation technique, electrodialysis stacks were designed using ion exchange membrane. Separation of NaCl from amino acid solution was performed in the condition similar to amino acid fermentation process. To obtain otimum conditions of separation, leakage of amino acid depending of pH and limiting current density were measured. On the basis of optimum condition, removal of NaCl and leakage of amino acid were investigated quantitatively in batch and continuous process, and current efficiencies were also obtained. As a result of batch experiment for 11 hours each amino acid solution, removal efficiencies of NaCl were in the ranges of 96.1~96.2%. Amino acid leakage rate of glycine, methionine, alanine were 2.5, 1.7, 2.0% respectively. Current efficiencies were in the ranges of 44.5~44.6%. As a result of continuous experiment in various flow rate of each amino acid solution, it took 120 ~ 150 min to reach to steady state. Removal efficiency of NaCl was increased as the flow rate was decreased, but current efficiency was decreased. At the steady states, there were no leakage of amino acid.

  • PDF