• Title/Summary/Keyword: $Chlorophyll\-\

Search Result 3,181, Processing Time 0.025 seconds

Influence of Daytime Temperature on the Time Required for Fruit Harvest and Yield of Hot Pepper (주간온도가 고추의 수확 소요일수 및 수량에 미치는 영향)

  • Lee, Sang-Gyu;Choi, Chang-Sun;Lee, Jun-Gu;Jang, Yoon-Ah;Nam, Chun-Woo;Lee, Hee-Ju;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1181-1186
    • /
    • 2013
  • Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, Chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This study examined the influence of air temperature during seedling growth on the time required to reach the first fruit maturity and yield of hot pepper. Seedling plants of 'Super Manita' hot pepper was grown in temperatures $2.5^{\circ}C$ and $5.0^{\circ}C$ lower than the optimum temperature (determined by the average of temperatures for the past 5 years). Seedlings were transplanted into round plastic containers (30-cm diam., 45-cm height) and were placed in growth chambers in which the ambient temperature was controlled under natural sunlight. The growth of seedlings under lowered temperatures was reduced compared to the control. The mineral (K, Mg, P, N) concentrations in the leaf tissues were higher when plants were grown with the ambient temperature $2.5^{\circ}C$ lower than the optimum, regardless of changes in other growth parameters. Tissue calcium (Ca) concentration was the highest in the plants grown with optimum temperature. The carbohydrate to nitrogen (C/N) ratio, which was the highest (18.3) in the plants grown with optimum temperature, decreased concomitantly as the ambient temperature was lowered $2.5^{\circ}C$ and $5.0^{\circ}C$. The yield of the early harvested fruits was also reduced as the ambient temperature became lower. The first fruit harvest date for the plants grown with optimum temperature (June 27) was 13 days and 40 days, respectively, earlier than that in plants grown with $2.5^{\circ}C$ (July 10) and $5.0^{\circ}C$ (Aug 6) lower ambient temperatures. The fruit yield per plant for the optimum temperature (724 g) was the greatest compared to those grown with $2.5^{\circ}C$ (446 g) and $5.0^{\circ}C$ (236 g) lower temperatures. The result of this study suggests that the growers should be cautioned not to transplant their hot pepper seedlings too early into the field, since it may delay the time of first harvest eventually reducing total fruit yield.

Effects of Artificial Light Sources on Growth and Yield of Peucedanum japonicum Hydroponically Grown in Plant Factory (식물공장 인공광원이 방풍나물의 생육 및 수량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Kim, Hyun-Hwan;Jung, Chung-Ryul;Kim, Dong-Eok;Nam, Sang-Young
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • This study was carried out to investigate the effects of artificial light sources on growth and yield of hydroponically grown Peucedanum japonicum in plant factory. Treatments were composed with; florescent lamp(FL) as control, and LED lights; R:B(2:1, RB), R:B:W(2:1:3, RBW), and R:B:G:W(2:1:0.5:3, RBGW). Plant height of RBGW and FL treatments were superior to RB and RBW. Leaf weight of RBW and RB were superior to FL and RBGW. There were no significant difference of leaf length and thickness among the treatments. Lightness of leaves was same tendency with plant height. Total phenolic compound content was the high in order of RB as $105.77mg{\cdot}100g^{-1}$ GE, RBW as $92.52mg{\cdot}100g^{-1}$ GE, FL as $89.08mg{\cdot}100g^{-1}$ GE, and RBGW $82.00mg{\cdot}100g^{-1}$ GE. Total flavonoids were not detected in all treatments. Vitamin C content was the highest in RB and the lowest in FL. Total dietary fiber were the highest in FL and the lowest in RBGW. There was no significant difference cystein and methionine contents among the treatments. Concludely, yield, total phenolic compounds, and vitamin C content was high in RBW and RB. We reached conclusion that RBW is best artificial light source considering yield, functionality and eye fatigability when work. We recommend to further study LED pulse and duty rates for increasing functionality.

Effect of LED Light Wavelength on Lettuce Growth, Vitamin C and Anthocyanin Contents (LED광 파장이 상추생육과 비타민 C 및 안토시아닌 함량에 미치는 영향)

  • Choi, Man Kwon;Baek, Gyeong Yun;Kwon, Soon Joo;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • In this study, we analyzed the growth characteristics of red lettuce under Light-emitting diode (LED) light environment as well as the change of vitamin C and anthocyanins of lettuce. We made five monochromatic light treatments (red 647 nm, 622 nm, blue 463 nm, 450 nm, White), six mixed red (R) and blue (B) light treatments (R : B = 9 : 1, 8 : 2, 7 : 3, 6 : 4, 5 : 5) and red + white, and three light treatments made according to photoperiod of LED with lighting sources ratio of red : blue (R : B = 8 : 2(18/06 h, 15/09 h, 12/12 h)). It was composed of totally 14 control beds. As a result, the red lettuce the most developed leaf height, leaf numbers and fresh weight under red single light, root length and leaf developed when grown under blue single light. Therefore, red light were related to above part of the lettuce, blue light were related to the growth of the underground part of lettuce. Case of the mixed light, leaf height, leaf numbers, fresh/dry weight of above and underground part were highest red + white light and root length and chlorophyll content were highest under red 7 : 3 blue light. Result of growing investigation by photoperiod, the red lettuce were considered to be most effective in 15/09 h (on/off). The content of anthocyanins; the single light source, mixed light and light irradiation period were highest under blue light (463 nm), red 7 : 3 blue and 18/06 h (on/off) light irradiation, respectively. The vitamin C showed the lowest content of $1.26mg{\cdot}L^{-1}$ under the white light, but showed the greatest content of $3.02mg{\cdot}L^{-1}$ for the control group.

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

Effects of Red/Blue Light Ratio and Short-term Light Quality Conversion on Growth and Anthocyanin Contents of Baby Leaf Lettuce (적색/청색광의 비율 및 수확 전 광질변환이 어린잎상추의 생육 및 안토시아닌 함량에 미치는 영향)

  • Lee, Jun-Gu;Oh, Sang-Seok;Cha, Seon-Hwa;Jang, Yoon-Ah;Kim, Seung-Yu;Um, Young-Chul;Cheong, Seung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • To establish the optimum artificial light illumination method for baby leaf lettuce in closed plant factory system, the effects of red/blue light quality and short-term light quality conversion on growth and anthocyanin content were investigated. The growth of 'Hongha' lettuce was most favorable under red single wavelength LED light after 23 days of treatment, sequentially followed by the growth under red/blue mixed light, blue light, and fluorescent light. Total anthocyanin content in the mixed red/blue light (R57-B43) was 4.1-fold and 6.9-fold increased compared to the red LED and fluorescent light, respectively. With increasing the blue light ratio to 43%, the growth of lettuce was significantly decreased, while the relative chlorophyll content and Hunter's $a^*$ value was increased, indicating that the red/blue light ratio inversely affects on growth and anthocyanin pigment development. By changing light quality from red to red/blue mixed light source (R57-B43) for 9 days before harvest, the growth rate decreased compared to the continuous red light illumination, while the anthocyanin content dramatically increased compared to either red LED or fluorescent light. Whereas, when the light source was changed to red light, the growth rate was increased but anthocyanin content was reversely decreased. The result demonstrated that both growth and anthocyanin expression could be effectively regulated by shifting of light quality between red and red/blue mixed light source at a specific growth stage of lettuce in a plant factory.

Composition of Nutrient Solution According to Soil Texture in Fertigation Culture of Cucumber (Cucumis sativus L.) (오이 관비재배 시 토성에 따른 적정 배양액 조성)

  • Han, Suk-Kyo;Eun, Jong-Seon;Kim, Ho-Cheol;Lee, Yong-Beom;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.162-169
    • /
    • 2008
  • To determine suitable composition of nutrient solution according to soil textures in fertigation culture of cucumber using three strengths (S) of Yamasaki cucumber recipe, chemical changes of soil, growth characteristics and yield of cucumber were investigated. Electric conductivity of drainage solution was risen in all treatments, pH of loam soil was generally optimum level and that of sandy soil was high level. Photosynthetic rate in loam soil supplied the 1/2 S and transpiration rate in sandy soil supplied the 1.0 S were most low. Diffusive resistance in sandy soil supplied the 1.0 S was high. Chlorophyll contents was higher concentrations by the kinds of soil. Amount of drainage solution in sandy loam soil supplied the 1/2 S and loam soil supplied the 1.0 S were most much and little, respectively. Water absorption rate was the opposition to amount of drainage solution. Nutrient contents in soil except calcium were most high in the 1.0 S by the kinds of soil. Nutrient contents in leaves, nitrogen in sandy soil supplied 1.0 S, phosphorus in loam soil supplied 1/2 S, potassium in two soil supplied 1.0 S, calcium in loam supplied 1/2 S and sandy loam soil supplied 1.0 S, magnesium in loam soil supplied the 1/2 S was high. The growth and yield of fruit were more in loam than in sandy loam soil. Therefore, the suitable compositions of macro-nutrients for fertigation culture of cucumber were determined in loam and sandy loam soils as follows: In loam soil, they were $NO_3$-N 12.3, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 5.7, Mg $3.5\;me{\cdot}L^{-1}$, whereas in sandy loam soil $NO_3$-N 11.7, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 4.9, Mg $3.2\;me\;L^{-1}$.

Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea (강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압)

  • Yang, Eun-Jin;Choi, Joong-Ki;Yoo, Man-Ho;Cho, Byung-Cheol;Choi, Dong-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.

Distribution and Growth of Bacteria in the Hypertrophic Lake Shiwha (과영양성 시화호에서 박테리아의 분포 및 성장)

  • Choi, Dong-Han;Kang, Sulk-Won;Song, Ki-Don;Huh, Sung-Hoi;Cho, Byung-Cheol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.92-100
    • /
    • 1997
  • Distribution of bacterial abundance and production was investigated during October, 1995-August, 1996 in Lake Shiwha constructed artificially in 1994. Its water column was distinguished by two layers: the brackish surface layer with salinity ranged from 6 to 20‰ and the saline hypoxic/anoxic bottom layer with salinity of 17 to 27‰ Except for samples collected in March, 1996 (on average 13 ${\mu}g\;l^{-1}$), chlorophyll a concentration ranged from 27.6 to 249.5 ${\mu}g\;l^{-1}$ in the euphotic zone, indicating the hypertrophic condition of Lake Shiwha during most of the studied period. In this study, bacterial productions measured by $^3H$-thymidine incorporation method were similar to those by $^{14}C$-leucine incorporation method. In hypertrophic, surface waters of Lake Shiwha, bacterial abundance and production ranged from 1.4 to $19.5{\times}10^9\;cells\;l^{-1}$ and from 1.6 to $126.5{\times}10^7\;cells\;l^{-1}\;h^{-1}$ respectively; 2 to 4 fold and 2 to 30 fold higher than those in eutrophic coastal waters outside of Lake Shiwha, respectively. Turnover times of bacterial community in the surface layer of Lake Shiwha ranged from 0.2 to 8.9 day, indicating that bacteria in the lake seemed to adapt to the hypertrophic condition. In the hypoxic bottom layer, bacterial abundance and production was up to 3 fold and 20 fold lower than those in the surface layer, and showed slow bacterial growth. Significant correlations between the bacterial abundance, production, and community turnover time with water temperature indicate water temperature was the important factor controlling distribution and growth of bacteria. However, during summer season, bacterial production seemed to be regulated by supply of substrates.

  • PDF

Phylogentic Position, Pigment Content and Optimal Growth Condition of the Unicellular Hydrogen-Producing Cyanobacterial Strains from Korean Coasts (한국 연안산 단세포성 수소생산 남세균 종주들의 분류계통, 색소함량 및 최적성장 환경)

  • PARK, JONG-WOO;KIM, JU HEE;CHO, AE-RA;JUNG, YUN-DUK;KIM, PYOUNG JOONG;KIM, HYUNG-SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • To set up unicellular cyanobacterial strains with photo-biological $H_2$ production potential, live samples were repeatedly collected from 68 stations in the coastal zone of Korea for the four years since 2005. Among 77 cyanobacterial strains established six (KNU strains, CB-MAL002, 026, 031, 054, 055 and 058) were finally chosen as the excellent strains for $H_2$ production with $H_2$ accumulation over 0.15 mL $H_2\;mL^{-1}$ under general basic $H_2$ production conditions as well as positive $H_2$ production for more than 60 hr. To explore optimum procedures for higher $H_2$ production efficiency of the six cyanobacterial strains, the inter-strain differences in the growth rate under the gradients of water temperature and salinity were investigated. The maximum daily growth rates of the six strains ranged from 1.78 to 2.08, and all of them exhibited $N_2-fixation$ ability. Based on the similarity of the 16S rRNA sequences, all the test strains were quite close to Cyanothece sp. ATCC51142 (99%). The six strains, however, were grouped into separate clades from strain ATCC51142 in the molecular phylogeny diagram. Chlorophyll- a content was 3.4~7.8% of the total dried weight, and the phycoerythrin and phycocyanin contents were half of those in the Atlantic strain, Synechococcus sp. Miami BG03511. The growth of the six strains was significantly suppressed at temperatures above the optimal range, $30{\sim}35^{\circ}C$, to be nearly stopped at $40^{\circ}C$. The growth was not inhibited by high salinities of 30 psu salinity in all the strains while strain CB055 maintained its high growth rate at low salinities down to 15 psu. The euryhaline strains like CB055 might support massive biotechnological cultivation systems using natural basal seawater in temperate latitudes. base seawater. The biological and ecophysiological characteristics of the test strains may contribute to designing the optimal procedures for photo-biological $H_2$ production by unicellular cyanobacteria.

The Limnological Survey and Phosphorus Loading of Lake Hoengsung (횡성호의 육수학적 조사와 인부하)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.411-422
    • /
    • 2004
  • A limnological survey was conducted in a reservoir, Lake Hoengsung located in Kangwondo, Korea, from July 2000 to September 2001 on the monthly basis. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main tributary. Secchi disc transparency, epilimnetic (0-5 m) turbidity, chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen(TN) and silica concentration were in the range of 0.9-3.5 m, 0.1-8.5 NTU, 0.3-32.4 mgChl $m^{-3}$, 5-46 mgP $m^{-3}$, 0.83-3.55 mgN $L^{-1}$ and 0.5-9.6 mgSi $L^{-1}$, respectively. Green algae and cyanobacteria dominated phytoplankton community in warm seasons, from July through October, 2000. In July a green alga (Scenedesmus sp.) was dominant with a maximum cell density of 10,480 cells mL. Cyanobacteria (Microcystics sp.) dominated in August and September with cell density of 3,492 and 295 cells mL ,respectively. Species diversity of phytoplankton was highest (2.22) in July. The trophic state of the reservoir can be classified as eutrophic on the basis of TP, Chl-a, and Secchi disc transparency. Because TP concentration was high in flood period, most of phosphorus loading was concentrated in rainy season. TP loading was calculated by multiplying TP and flow rate. The dam managing company measured inflow rate of the reservoir daily, while TP was measured by weekly surveys. TP of unmeasured days was estimated from the empirical relationship of TP and the flow rate of the main tributary; $TP=5.59Q^{0.45}\;(R^2=0.47)$. Annual TP loading was calculated to be 4.45 tP $yr^{-1}$, and the areal P loading was 0.77 gP $m^{-2}\;yr^{-1}$ which is similar to the critical P loading for eutrophication by Vollenweider's phosphorus model, 0.72 gP $m^{-2}\;yr^{-1}$.