Composition of Nutrient Solution According to Soil Texture in Fertigation Culture of Cucumber (Cucumis sativus L.)

오이 관비재배 시 토성에 따른 적정 배양액 조성

  • Han, Suk-Kyo (Department of Horticulture, Chonbuk National University) ;
  • Eun, Jong-Seon (Department of Horticulture, Chonbuk National University) ;
  • Kim, Ho-Cheol (Department of Horticulture Science, Wonkwang University) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, University of Seoul) ;
  • Bae, Jong-Hyang (Department of Horticulture Science, Wonkwang University)
  • 한석교 (전북대학교 원예학과) ;
  • 은종선 (전북대학교 원예학과) ;
  • 김호철 (원광대학교 원예.애완동식물학부) ;
  • 이용범 (서울시립대학교 환경원예학과) ;
  • 배종향 (원광대학교 원예.애완동식물학부)
  • Published : 2008.06.30

Abstract

To determine suitable composition of nutrient solution according to soil textures in fertigation culture of cucumber using three strengths (S) of Yamasaki cucumber recipe, chemical changes of soil, growth characteristics and yield of cucumber were investigated. Electric conductivity of drainage solution was risen in all treatments, pH of loam soil was generally optimum level and that of sandy soil was high level. Photosynthetic rate in loam soil supplied the 1/2 S and transpiration rate in sandy soil supplied the 1.0 S were most low. Diffusive resistance in sandy soil supplied the 1.0 S was high. Chlorophyll contents was higher concentrations by the kinds of soil. Amount of drainage solution in sandy loam soil supplied the 1/2 S and loam soil supplied the 1.0 S were most much and little, respectively. Water absorption rate was the opposition to amount of drainage solution. Nutrient contents in soil except calcium were most high in the 1.0 S by the kinds of soil. Nutrient contents in leaves, nitrogen in sandy soil supplied 1.0 S, phosphorus in loam soil supplied 1/2 S, potassium in two soil supplied 1.0 S, calcium in loam supplied 1/2 S and sandy loam soil supplied 1.0 S, magnesium in loam soil supplied the 1/2 S was high. The growth and yield of fruit were more in loam than in sandy loam soil. Therefore, the suitable compositions of macro-nutrients for fertigation culture of cucumber were determined in loam and sandy loam soils as follows: In loam soil, they were $NO_3$-N 12.3, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 5.7, Mg $3.5\;me{\cdot}L^{-1}$, whereas in sandy loam soil $NO_3$-N 11.7, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 4.9, Mg $3.2\;me\;L^{-1}$.

오이 관비재배에서 토성에 따른 적정 관비액 조성을 구명하고자 양토와 사양토를 대상으로 Yamasaki 오이배양액 농도에 따른 토양의 화학성 변화, 생육 및 과실 특성 등을 조사하였다. 토양 EC는 모두 재배 중기부터 상승하였고, pH는 양토에서는 적정수준이었으나 사양토는 모두 높은 수준이었다. 광합성속도는 양토 1/2배액, 증산율은 사양토 1배액에서 가장 낮았다. 그리고 확산저항성과 엽록소함량은 사양토 1배액에서 높았다. 배액량은 사양토 1/2배 액에서 가장 많았고 양토 1배액에서 가장 적었고, 수분 흡수량은 반대의 경향이었다. 토양 무기양분은 두 토양 모두에서 칼슘을 제외하고 1배액에서 높았다. 잎의 질소 함량은 사양토 1배액, 인산은 양토 1/2배액, 가리는 모두 1배액, 칼슘은 양토 1/2배액과 사양토 1배액, 마그네슘은 양토 1/2 배액에서 높았다. 생육과 수량은 사양토보다 양토에서 높았고 1배액에서 가장 좋았다. 따라서 오이 관비재배 시 양토에서는 $NO_3$-N 12.3, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 5.7, Mg $3.5\;me\;L^{-1}$, 사양토에서는 $NO_3$-N 11.7, $NH_4$-N 1.0, P 3.0, K 5.9, Ca 4.9, g $3.2\;me\;L^{-1}$으로 조성된 배양액이 적합한 것으로 생각된다.

Keywords

References

  1. Alburquerque, J.A., J. Gonzalvez, D. Garcia, and J. Cegarra. 2006. Composting of a solid olive-mall byproduct ('alperujo') and the potential of the resulting compost for cultivating pepper under commercial conditions. Waste Mgt. 26:620-626 https://doi.org/10.1016/j.wasman.2005.04.008
  2. Alva, A.K., S. Paramasivam, T.A. Obreza, and A.W. Schumann. 2006. Nitrogen best management practice for citrus trees. I. Fruit yield, quality, and leaf nutritional status. Scientia Hort. 107:233-244 https://doi.org/10.1016/j.scienta.2005.05.017
  3. Bowen, P. and B. Frey. 2002. Response of plasticultured bell pepper to staking, irrigation frequency, and fertigated nitrogen rate. HortScience 37(1):95-100
  4. Findenegg, G.R., M.L. Van Beusichem, and W.G. Keltjens. 1986. Proton balance of plants: physiological, agronomical and ecological implications. Neth. J. Agric. Sci. 34:371-379
  5. Gardenas, A.I., J.W. Hopmans, B.R. Hanson, and J. Simunek. 2005. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under microirrigation. Agricultural Water Mgt. 74:219-242 https://doi.org/10.1016/j.agwat.2004.11.011
  6. Hartz, T.K. and G.J. Hochmuth. 1996. Fertility management of drip irrigated vegetables. Hort. Technol. 6(3):168-172
  7. Horst N. 1986. Mineral Nutrition in High Plant. Academic Plant
  8. Islam A.K., D.G. Edwards, and C.J. Asher. 1980. pH optimal for crop growth. Plant and Soil. 54:339-357 https://doi.org/10.1007/BF02181830
  9. Kang, J.G., S.Y. Yang, B.S. Lee, and S.J. Chung. 2003. Effects of changing fertilizer concentrations and fertigation frequencies on growth and fruiting of subirrigated ornamental pepper. J. Kor. Soc. Hort. Sci. 44(4):523-529
  10. Lee, J.H., S.K. Park, Y.H. Lee, and Y.B. Lee. 2005. Effect of fertigation level and frequency on uptake of nutrients, growth, and yield in cucumber. J. Kor. Soc. Hort. Sci. 46(6):356-362
  11. Mahajan, G. and K.G. Singh. 2006. Response of greenhouse tomato to irrigation and fertigation. Agricultural Water Mgt. 84:202-206 https://doi.org/10.1016/j.agwat.2006.03.003
  12. Ministry of Agriculture and Forests (MAF) (in Republic of Korea). 2006
  13. No, C.W., J.K. No, and T.I. Kim. 2003. Studies on fertigation culture of controlled vegetables. RDA, Suwon, Korea
  14. Reynolds, A.G., W.D. Lowrey, and C. De Savigny. 2005. Influence of irrigation and fertigation on fruit composition, vine performance, and water relations of Concord and Niagara grapevines. Amer. J. Enol. Viticult. 56(2):110-128
  15. Semiha, G., I. Hayriye, and B. Gokhan. 2006. Effects of different nitrogen rates on yield and leaf nutrient contents of drip-fertigated and greenhouse-grown cucumber. Asian J. Plant Sci. 5(4):657-662 https://doi.org/10.3923/ajps.2006.657.662
  16. Silber, A., B. Yones, and I. Dori. 2004. Rhizosphere pH as a result of nitrogen levels and $NH_{4}/NO_{3}$ ratio and its effect on zinc availability and on growth of rice flower (Ozothamnus diosmifolius). Plant and Soil. 262:205-213 https://doi.org/10.1023/B:PLSO.0000037042.32687.95
  17. Stork, P.R., P.H. Jerie, and A.P.L. Callinan. 2003. Subsurface drip irrigation in raised bed tomato production. II. Soil acidification under current commercial practice. Australian J. Soil Res. 41(7):1305-1315 https://doi.org/10.1071/SR03034
  18. Wang, Q. and J. Chen. 2003. Variation in photosynthetic characteristics and leaf area contributes to Spathiphyllum cultivar differences in biomass production. Photosynthetica 41(3):443-447 https://doi.org/10.1023/B:PHOT.0000015469.80667.44