The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.
The Ce, Mn: $LiTaO_3$ crystals were grown by Czochralski method in congruent ${\varphi}$3" $LiTaO_3$ single crystal growing conditions. Concentrations of Ce and Mn in melt were respectively 0.1 mole%. As-grown crystals were red, transparent and the grown crystals were tested with oxidation/reduction treatment for clor and other properties. Influence of Ce and Mn dopants on $LiTaO_3$ crystal properties was discussed. And the nonlinear optical properties of the Ce, Mn: $LiTaO_3$ crystal are being studied.
$La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.
Proceedings of the Optical Society of Korea Conference
/
2002.07a
/
pp.96-97
/
2002
불순물을 이용한 비휘발성 홀로그램저장[1,2]은 기존의 열정착을 광정착으로 대치하는 방법으로서 여러 가지 희토류 혹은 전이금속이온을 첨가한 LiMbO$_3$ (LNO) 단결정 재료에서 시도되고 있다. 대표적인 재료로서 Mn,Fe:LNO 가 있으나 Mn,Ce:LNO, Cu,Co:LNO, Tb,Fe:LNO 등도 연구되고 있고 Stoichiometric LNO 경우엔 Pr:LNO, Er:LNO, Tb:LNO 등이 연구되고 있다. 그 외에 Mn:YAlO$_3$도 약하긴 하지만 비휘발성이 최근 보고되었다. (중략)
Journal of the Korean Crystal Growth and Crystal Technology
/
v.26
no.3
/
pp.115-120
/
2016
$CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2001.11b
/
pp.442-445
/
2001
In this study, microstructural and dielectric properties of $Pb_{0.83}(La_{0.2}Ce_{0.8})_{0.08}TiO_3$(PCT) ceramics as a function of $MnO_2$ addition were investigated for 30MHz ceramic resonator application. Grain size was gradually increased according to the increase of $MnO_2$ addition amount and showed the highest value of $1.502{\mu}m$ at the 0.9wt% $MnO_2$. Moreover, density showed the highest value of $7.582 g/cm^3$ at the 0.7wt% $MnO_2$.All the composition ceramics,curie temperature was nearly constant around $330^{\circ}C$