• Title/Summary/Keyword: $CaCO_3$ structure

Search Result 191, Processing Time 0.048 seconds

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

Technologies for the Removal of Water Hardness and Scaling Prevention

  • Ahn, Min Kyung;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • In nucleation assisted crystallization process formed $CO_2$ leaves as colloid gas and is used as the template by the rapidly growing crystals in the nucleation site. This emulsion of $CaCO_3$ micro-crystals & $CO_2$ micro-bubbles forms hollow particles. Formed hollow particles are double walled, both internal and external faces belonging to the cleavage aragonites which separate the surrounding water from the enclosed gas cavity. Hence, the reverse reaction of $CO_2$ with water forming Carbonic Acid is not possible and the pH stability is maintained. In fact every excess $CaCO_3$ crystals are buffering any carbonic acid left over. This $CO_2$ based nucleation technology prevents scale formation in water channels, but it also helps to reduce the previously formed scales. This process takes out water dissolved $CO_2$ in almost-visible micro-bubbles forms that helps reducing previously formed scale over a period of time (depends on the usage period). The aragonite crystals can't form scale because of its stable molecular structure and neutral surface electro potentiality.

Study of Europium-activated Calcium Aluminium Silicate Phosphors (유로피움-활성화 칼슘 알루미늄 실리케이트 형광체 연구)

  • Hwang, Jung-Ha;Park, Ju-Seok;Jang, Bo-Yun;Nahm, Sahn;Kim, Joon-Soo;Yu, Soon-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1020-1024
    • /
    • 2006
  • Europium$(Eu^{2+}\;or\;Eu^{3+})$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue, green, and even red light depending on the starting milterials and annealing conditions for synthesis. In addition, the structure was also changed when the different starting materials were used. When $CaCO_3$ was used as a starting material, tetragonal $Ca_2Al_2SiO_7$ was formed. However, pure green light was emitted when the annealing was conducted in reduced atmosphere and red one was emitted by annealing in air. In the case of $CaSiO_3$ as a starting material, triclinic $CaAl_2Si_2O_8$ was formed and only pure blue emission was observed. Moreover, this blue phosphor exhibited higher intensity than that of commercial YAG:Ce phosphor, which showed the possibility of application on the phosphor for new light source such as a UV-LED.

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution (PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성)

  • Sin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Preparation and Characterization of Porous Filters from Ca(OH)2 and CaCO3 for SO2 Removal in Dry-FGD Process (건식 FGD 공정에서 SO2 제거를 위한 Ca(OH)2 및 CaCO3 원료의 다공성 필터 제조 및 특성)

  • Han, Yo-Seop;Kim, Hyun-Jung;Park, Young-Goo;Park, Jai-Koo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.772-777
    • /
    • 2005
  • Porous hydrated lime and limestone filters were prepared by foaming and gelcasting method, and their physical properties were evaluated. Through these analyses, it has been found that with the increased porosity and pore size of the filters, majority of pores in the filters were inter-connected by windows. Also, $SO_2$ removal efficiency for the filters was investigated. As the porosity and the reaction temperature increased, $SO_2$ removal efficiency also increased. Especially, unlike the variation of entrance concentration, the entrance flow rate had great influence on the removal efficiency. In case of the filters with an equal porosity, the hydrated lime filter had superior removal efficiency compared to the limestone filter. From these results, it was shown that the high conversion ratio to CaO from the hydrated lime filter was a result of facilitated formation of $CaSO_4$ by $SO_2$.

A Study on the Highest Exposure Temperatures of Exposed Reinforced Concrete Structures at Fire (화재에 노출된 철근콘크리트 구조물의 최고노출온도 추정을 위한 연구)

  • Kim, Seong Soo;Lee, Jeong Bae;Kim, Il Kon;Song, Jong Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • In this paper, Machinery analysis was conducted, in order to predict highest exposure temperatures and the analyze fire damage in the case of fire on reinforced concrete structure. After analyzing differential thermal of reference materials in accordance with temperature of concrete reference core specimen, it turned out that powerful endothermic peak came resulting from evaporation of capillary water and get water untill $200^{\circ}C$, another endothermic peak came resulting from decomposition of calcium hydroxide at $520^{\circ}C$, and then mass of reference materials remarkably decreased due to endothermic reaction. Another powerful endothermic reaction came after decomposition of calcite at $720^{\circ}C$. After analyzing X-ray diffraction of reference materials in accordance with temperature of concrete reference core specimen, it turned out that calcium hydroxide existed until the temperature of $400^{\circ}C$, but CH almost disappeared and CaO appeared from $600^{\circ}C$. The production increased in proportion to the temperature. This is because that calcium hydroxide and calcite are decomposed and CaO is produced when the temperature of concrete increases with fire. It is estimated that calcium hydroxide and calcite are utterly decomposed and peak disappears, and peak of CaO is remarkably formed instead, at the temperature of $700-800^{\circ}C$.