• 제목/요약/키워드: $Ca^{2+}$ flux

검색결과 213건 처리시간 0.025초

지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석 (Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation)

  • 허지용;한종훈;이희범;이종열;허남국
    • 한국지반환경공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.13-22
    • /
    • 2015
  • 나노여과공정에서 폭발 오염물질인 TNT(2, 4, 6-Trinitrotoluene), RDX(Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) 및 HMX(1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) 화약류의 잔류에 용존유기물의 오염과 무기물의 스케일링에 의한 케익층 형성 및 농도분극의 영향성을 분석하였다. 지표수 조건의 휴믹산 농도에 의한 나노여과공정에서는 용존유기물에 의한 나노여과막 오염이 발생되어도 플럭스의 큰 변화가 없는 것으로 나타났으며, 휴믹산과 무기 스케일링이 동시에 발생되었을 경우에는 나노여과공정에서 플럭스의 감소가 큰 것으로 나타났다. 휴믹산과 $Ca_3(PO_4)_2$을 혼합하였을 때 플럭스 투과량이 42% 감소하였고 휴믹산만 첨가하였을 경우에 플럭스 투과량은 8% 감소한 것으로 나타났다. 이는 NF 막의 $Ca_3(PO_4)_2$스켈턴트 결정과 용존유기물이 칼슘($Ca^{2+}$)이온의 상호작용에 의해 막 표면에 증강된 케익층을 형성하여 NF 막의 플럭스를 감소시키는 것을 알 수 있었다. 그리고 막의 크기배제에 의한 선택성을 기반으로 하여 폭발물의 나노여과막에 의한 잔류량을 조사할 경우 HMX(296.15, 83%) ${\gg}$ RDX(222.12, 49%) ≋ TNT(227.13, 32%)로 나타났다. 막 오염과 스케일링은 케익층의 형성으로 막 표면에서 증대된 농도 분극효과를 나타낼 수 있으나, 무기 스케일링 형성과 휴믹산에 의한 화약류의 잔류 영향성은 순수한 DI 및 NaCl 피드용액의 여과공정 결과와 크게 다르지 않는 것으로 나타났다. 이는 전량여과방식(Dead-end Flow)의 나노여과공정에서 화약류의 잔류 영향성은 임계크기에 의한 선택적 배제성이 케익층 형성 및 농도분극에 의한 잔류 영향성보다 크다는 것을 보여준다.

친수화 고분자 소재를 이용한 저압용 PVDF 나노복합중공사막의 제조 및 성능 연구 (Preparation and Performance of Low Pressure PVDF Nano-composite Hollow Fiber Membrane Using Hydrophilic Polymer)

  • 박철오;임지원
    • 멤브레인
    • /
    • 제28권5호
    • /
    • pp.361-367
    • /
    • 2018
  • 본 연구에서는 polyvinylidene fluoride (PVDF) 중공사막을 지지체로 한 저압용 나노복합막을 제조하였다. Poly styrene sulfonic acid (PSSA)와 polyethyleneimine (PEI)을 layer-by-layer 및 염석 효과 방식으로 지지체막에 코팅하였다. 막의 투과도와 염 배제율 성능을 알아보고자 NaCl, $MgCl_2$, $CaSO_4$ 100 mg/L수용액을 1 L/min의 유량으로, 2 bar의 압력을 상온에서 가해주었다. 20,000 ppm의 PSSA (이온세기 1.0)용액에 3분, 30,000 ppm (이온세기 0.1)용액에 1분 코팅한 막이 가장 우수하였다. 투과도와 염 배제율은 NaCl 공급액에서는 38.5 LMH, 57.1%, $MgCl_2$는 37.9 LMH, 90.2%, $CaSO_4$는 32.4 LMH, 54.6%로 각각 측정되었다.

적출된 토끼와 자라심장에서의 $Ca^{++}$ Pool ($Ca^{++}$ Polls in Isolated Rabbit and Turtle Heart)

  • 김인교;이중우;강두희
    • The Korean Journal of Physiology
    • /
    • 제9권1호
    • /
    • pp.13-22
    • /
    • 1975
  • From the study of movements of $Ca^{++}$ in frog cardiac muscle, Niedergerke (1963) postulated that $Ca^{++}$ necessary for the cardiac contraction is stored in a specific pool. Langer et al (1967) and DeCaro (1967) also found a close relationship between the change of $Ca^{++}$ flux kinetics and the change of contractile force. According to the studies of several investigators, Ca II (Bailey and Dressel 1968) or phase I and II (Langer 1965, Langer et al 1967, 1971) in the $Ca^{++}$ washout curve was associated with cardiac contractility. This investigation was aimed to elucidate the anatomical region of the contractile active $Ca^{++}$ pool. At the same time, it was assumed in this study that $Ca^{++}$ in the sarcoplasmic reticulumn represents one of the major intracellular $Ca^{++}$ pool and cardiac contractility was also dependent on the intracellular $Ca^{++}$ concentration. Consequently, this experiment was performed at different temperatures to activate to activate inhibit the deactivating process of activated $Ca^{++}$ in the intracellular space to see if changes in the contractility decay curve existed at different temperatures. The isolated hearts of rabbits and turtles (Amyda maackii) were attached to the perfusion apparatus according to the method employed by Bailey and Dressel (1968). The isolated hearts were initally perfused with a full Ringer solution containing 2 mg/ml of inulin for 1 hr, and then $Ca^{++}$ and inulin-free Ringer solution was perfused while the isometric tension was recorded and a serial sample of perfusion fluid dripping from the cardiac apex was collected for 10 sec throughout experimental period. The above procedure was performed at $23^{\circ}C$, $30^{\circ}C$ and $38^{\circ}C$ on the rabbit heart and $10{\sim}13^{\circ}C$, $10^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$ on the turtle heart. After determination of $Ca^{++}$ and inulin concentration of the samples, the $Ca^{++}$, inulin washout curve and the contractile tensin decay curve were analysed according to the method of Riggs (1963). The results were summarized as follows; 1. In the rabbit heart, there are 2 inulin compartments, 3 $Ca^{++}$ compartments and sing1e exponential decay of contractile tension. In the turtle heart, there are $1{\sim}2$ inulin compartments, $1{\sim}2$ $Ca^{++}$ compartments and $1{\sim}2$ phases of contractile tension decay. The fact that the inulin space was divided into 3 compartments in the washout curve in these hearts indicates the presence of heterogeneity in cardiac perfusion, i.e., overfused and underperfused area. 2. Ca I a9d Ca II in these hearts were found to have $Ca^{++}$ in the ECF compartments because their half times in the washout curves were far smaller than those of the inulin washout curves in the rabbit heart and similar to those of the inulin washout curves in the turtle heart. Ca III in the rabbit heart may have originated from the intracellular $Ca^{++}$ store. But no Ca III in the turtle heart was found. This may be due to the fact that the iutracellular $Ca^{++}$ pool in the turtle heart was too small to detect using this experimental procedure since sarcoplasmic reticulumn in the turtle heart is poorly developed. 3. In the rabbit heart, there were no chages in the half time of Ca I, Ca II, inulin I and inulin II at different temperatures, but the half time of Ca III was significantly prolonged at lower temperatures, and the half time of the contractile tension decay tended to be prolonged at lower temperatures but this was not significant. In the turtle heart, there were no changes in the half time of Ca I, Ca II, inulin 1, inulin II and phase I of the contractile tension decay at different temperatures, but the half time of phase II of the contractile tension decay was significantly prolonged at lower temperatures. This finding indicates that intracellu!ar $Ca^{++}$ in these hearts was also responsible particulary for maintaining the cardiac contractility at the lower temperatures. 4. The half times of contractile tension decay were shorter than those of Ca II in the $Ca^{++}$ washout curves in both animal hearts. According to the above results it was shown that $Ca^{++}$ in ECF is primarily and $Ca^{++}$ in the intracellular space is partially associated with the cardic contractility.

  • PDF

녹색 발광의 $CaZrO_3:\;HO_{3+}$ 축광성 형광체의 합성 및 발광 특성 (Synthesis and luminescent properties of a new green $CaZrO_3:\;HO_{3+}$ long persistent phosphors)

  • 박병석;최종건
    • 한국결정성장학회지
    • /
    • 제18권3호
    • /
    • pp.109-114
    • /
    • 2008
  • 새로운 녹색의 $CaZrO_3$ : $HO_{3+}$ 축광성 형광체를 고온의 약한 환원 분위기에서 전통적인 고상 반응법으로 합성하였다. $CaZrO_3$ : $HO_{3+}$ 축광성 형광체에 첨가 된 융제 $H_3BO_3$의 역할과 부활제의 적정농도에 대하여 연구하였으며, 합성한 축광성 형광체의 형광 분석 및 광 발광 분석을 행하였다. 고온의 질소 분위기에서 합성한 $CaZrO_3$ : $HO_{3+}$ 축광성 형광체는 546nm의 발광 피크가 나타남을 확인 하였으며, 장잔광 스펙트럼 또한 폭이 좁은 546 nm의 발광 피크가 나타남에 따라 순수한 녹색의 발광색을 띄고 있음을 확인하였다 녹색의 $CaZrO_3$ : $HO_{3+}$ 축광성 형광체의 발광 지속시간은 254 nm UV lamp로 여기 시킨 후 어두운 곳에서 5시간 이상 발광이 유지되었다. 발광 피크는 $HO_{3+}$ 이온의 $^5F_4$, $^5S_2{\to}^5I_3$ 전이에 의한 것이며, 잔광 특성은 $CaZrO_3$ 격자 내에 trap center가 생성됨 의하여 발생되는 것으로 판단된다.

가교된 폴리비닐알콜 복합막을 이용한 불화에탄올/물 혼합용액의 투과증발분리 특성 (Pervaporation Separation of fluoroethanol/water Mixtures through Crosslinked Poly(vinyl alcohol) Composite Membranes)

  • 이수복;안상만;장봉준;김정훈;이용택
    • 멤브레인
    • /
    • 제14권2호
    • /
    • pp.166-172
    • /
    • 2004
  • 본 연구는 에스텔화 막반응공정에 의한 2,2,2-trifluoroethyl metacrylate (TFEMA)의 생산을 위한 선행연구로, 가교된 poly(vinyl alcohol) 복합막을 이용하여 TFEA (2,2,2-trifluoroethanol)/water 혼합용액을 대상으로 투과증발 특성을 연구하였다 복합막은 다공성 polyethersulfone (PES) 지지체 위에 PVA와 glutaraldehyde (GA)를 같이 녹인 수용액을 코팅한 후 산 촉매 하에서 열가교시킴으로써 제조하였다. SEM (scanning electron microscopy)을 통하여 선택층의 두께는 2-3 $\mu\textrm{m}$로 확인되었고, 제조한 PVA 코팅층의 수평윤도는 가교제의 농도가 증가함에 따라 감소하는 경향을 보였다. 투과증발 실험결과 가교제의 농도가 증가할수록, 투과도는 감소하고 TFEA/water의 선택도는 증가하는 경향을 보였다. 그리고 85-95wt%의 TFEA 혼합용액의 전범위에서 운전온도가 증가할수록 투과도는 증가하였지만, 선택도는 90 wt% TFEA 농도 이하에서는 감소하는 경향을 보인 반면, 95 wt%에서는 증가하는 흥미로운 경향을 보였다. 0.1 moi GA로 가교된 PVA 복합막은 운전온도 8$0^{\circ}C$, 90 wt% TFEA 농도에서 1.5 kg/$m^2$hr의 매우 높은 투과도와 320의 선택도를 보였으며, 따라서 TFEA의 에스텔화 막반응공정에 적용 가능성을 보여주었다.

$A_{23187}$과 2가 이온에 의해 일어나는 $K^{+}$ 이온과 $H^{-}$ 이온의 흐름에 미치는 Triterpenoidal Dammarane Serids의 Glycosides와 그 Aglycones의 영향 (The Action of Triterpenoidal Glycosides of Dammarane Series and Their Aglycones on $K^{+}$ and $H^{-}$ Fluxes in Erythrocytes, Induced by lonophore $A_{23187}$ and Divalent ions)

  • Kim, Yu.A.;Park, Kyeong-Mee;Kyung, Jong-Su;Hyun, Hak-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제20권2호
    • /
    • pp.168-172
    • /
    • 1996
  • Ginsenoside Rb,, at a concentration of 10 $\mu\textrm{g}$/ml and over, initiated the cycle of oscillation of ion flux in erythrocytes after the cells had been treated with a protonophore, carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone (FCCP) and then with a $Ca^{2+}$ ionophore, A23,3,. Its action was similar to the additional portion of $Ca^{2+}$-ionophore or $Ca^{2+}$ ion to the erythrocytes. Effects of $Rg_1$ and Rf were different from that of Rb,. They did not induce the oscillation. They, however, increased the extracellular $K^{+}$ concentration and pH without returning to the initial state in the erythrocytes processed with FCCP and $A_{23187}$. We established that ginsenosides from 20-(5)-panaxatriol family induced the membrane hyperpolarization in erythrocytes, which was attenuated by the pretreatment of $Rb_1$, a major component of 20-(5)-panaxadiol.

  • PDF

BPSCCO 자기 효과 (Magnetic Characteristics of BiPbSrCaCuO Oxide Superconductor)

  • 이상헌;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.252-254
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

원수의 수질화학과 HA의 물리화학적 특성이 막 오염에 미치는 영향 (Effects of Surface Water Chemistry and Physicochemical Characteristics of Humic Acid on Fouling of Membrane)

  • 배진열;한인섭;박성호;신지원
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.242-247
    • /
    • 2005
  • In this study, we investigated the removal efficiencies of pollutants and permeate fluxes depending on chemistry of feed water, various molecular weight cut-offs (MWCOs) and materials of membrane, operating pressure. We used seven MWCO membranes of YC0.5, YM1, YM3, YM10, YM30, YM100 and PM30, humic acid solution and surface water as feed water, and examined variation in permeate flux. Results of TOC removal experiment demonstrate that MWCO lower 1,000daltons could remove humic acid effectively. As increasing solution pH and decreasing divalent cations ($Ca^{2+}$) concentration, TOC removal increased. But $UV_{254}$ removal efficiency increased with higher divalent cation concentration and solution pH. Membrane fouling increased with increasing electrolyte (NaCl), divalent cation concentration and decreasing solution pH. In spite of initial permeate flux of the hydrophobic membrane (PM30) was higher than that of the hydrophilic membrane (YM30), flux decline of PM30 was significant during operation. At higher operating pressure, compactness of the cake layer on the membrane surface increased, resulting in gradual increase in hydraulic resistance.

Flux 첨가에 의한 Anorthite 합성에 관한 연구 (The Synthesis of Anorthite by Addition of Flux)

  • 안영필;최석홍;이광
    • 한국세라믹학회지
    • /
    • 제16권2호
    • /
    • pp.83-88
    • /
    • 1979
  • The Anorthite is useful compound for some ceramic industries but it is difficult to produce Anorthite because of its high melting point (1553$^{\circ}C$) and narrow firing range. On this study, glass frit was added to Anorthite batch composition to widen firing range and lower melting point. After mixing a glass frit $(Na_2O-CaO-6SiO_2)$ with Anorthite, it was melted and quenched. Ratio of Anorthite vs. glass frit was 9 : 1, 8.5 : 1.5, 8 : 2, 7.5 : 2.5, 7 : 3. In those batch composition added amount of $No_2O$ were between 1.3wt.% and 3.9wt.%. To find the thermal change of the quenched, D.T.A. was surveyed. The quenched were fired at various vitrification temperature and detected by X-Raydiffraction analysis. With addition of glass frit, firing range and vitrification temperature of Anorthite was 100~15$0^{\circ}C$ and 1050~115$0^{\circ}C$ respectively. Optimum amount of glass frit was 20wt.% for the upper mentioned.

  • PDF

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.