• Title/Summary/Keyword: $Ca^{+}$complex with CO and $CO_{2}$

Search Result 53, Processing Time 0.023 seconds

Theoretical Study of the Structures and Binding Energies of Ca+-(CO)n and Ca+-(CO2)n (n=1,2) (Ca+-(CO)n과 Ca+-(CO2)n (n=1,2)의 구조와 결합에너지에 대한 이론 연구)

  • Park, Gil-Soon;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • The optimized structures and vibrational frequencies for $Ca^+-(CO)_n$ and $Ca^+-(CO_2)_n$ (n=1,2) complexes were calculated with MP2 and B3LYP methods employing 6-311++G(2d,p) basis sets. Also the binding energies were investigated for all complexes to compare the stabilities. For $Ca^+-(CO)_n$ C-bonded complexes are more stable than O-bonded complexes. Two stable conformations, linear and $C_{2v}$ form, are possible for $Ca^+-(CO)_2$ complexes and the $C_{2v}$ form is more stable than the linear form. $Ca^+-(CO_2)_2$ also has two possible conformations and linear form has slightly lower energy than $C_{2v}$ form.

Performance Evaluation of Bench-Scale Sulfur-Oxidizing Autotrophic Denitrificaiton Process Using Different Packing Material and Position in Reactor (담체의 종류와 배열에 따른 회분식 황 산화 탈질공정의 고농도 질산성질소를 함유한 인공폐수의 탈질효율 평가)

  • Sim, Dong-Min;Ahn, Ju-Hyeon;Kim, Seoung-Hyun;Gwon, Eun-Mi;Chung, Wook-Jin;Jin, Chang-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.231-239
    • /
    • 2006
  • In this study, we evaluated the efficiency of using sulfur-$CaCO_3$ complex pellet in the sulfur oxidizing autotrophic denitrification process for synthetic wastewater with high $CaCO_3$ concentration. The sulfur-$CaCO_3$ complex pellet was packed in reactor(R4). Influent ${NO_3}^--N$ loading rate was from 200 to $1,000g/m^3{\cdot}day$. During the operation, average denitrification efficiency of R4 was above 95%. Particularly, the denitrififation rate at $1,000g/m^3{\cdot}day$ loading was 98.96% for R4. High ${NO_3}^--N$ removal efficiency was determined in R4 compared with other reactors. Through $Ca^{2+}$ and alkalinity analyses, we calculated the supplied alkalinity from the packed $CaCO_3$ in the reactor. Sulfur-$CaCO_3$ complex pellet more effectively supplied alkalinity through the dissociation of $CaCO_3$ as compared with other media. Based on these results, sulfur-$CaCO_3$ complex pellet increased the pH buffering capacity while also providing the carbon source to the denitrifying bacteria. Denitrification efficiency of R4 was also higher than other reactors. ESEM pictures of sulfur-$CaCO_3$ complex pellet show higher porosity than that of the granular sulfur. Hence, more denitrifying bacteria attached on the sulfur-$CaCO_3$ complex pellet than on granular sulfur. It can be concluded that the sulfur-$CaCO_3$ complex pellet is a more suitable media for a sulfur oxidizing autotrophic denitrification process as it provides high denitrification efficiency.

Enhancement of Cultivation Efficiency of Bifidobacterium longum Using Calcium Carbonate Buffer System (Calcium Carbonate Buffer System을 이용한 Bifidobacterium longum의 배양 효율 증대에 관한 연구)

  • Lee, Ki-Yong;Hwang, In-Bum;Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.126-132
    • /
    • 1997
  • Calcium carbonate ($CaCO_3$) immobilized with alginate was studied as buffer system to enhance the cultivation efficiency of Bifidobacterium longum (ATCC 15707) which is inhibited at low pH. To test the bufferring effect of the immobilized $CaCO_3$ beads, pH value in each modified trypticase-proteose peptone-yeast (TPY) broth which is adjusted to pH 4.0 with acetic acid, lactic acid and complex solution of acetic and lactic acid, 3:2 (M:M) was tested by concentration of $CaCO_3$ bead and reaction time. The bufferring effect of $CaCO_3$ bead became higher with increasing the amount of $CaCO_3$ bead in the acidic solution. The growth rate of bifidobacteria and bufferring effect were examined in relation to the amount of $CaCO_3$ bead and concentration of glucose in the modified TPY media. The growth rate of bifidobacteria and bufferring effect were increased with increasing the amount of $CaCO_3$ bead and concentration of glucose. Also, the exponential time of bifidobacteria became longer with increasing the amount of $CaCO_3$ bead and concentration of glucose in the modified TPY media. When we observed the growth rate of bifidobacteria by the method of pH-controlled culture and $CaCO_3$ buffer system, the $CaCO_3$ buffer system was more effective than that of pH-controlled culture. Therefore, this $CaCO_3$ buffer system may be useful as a method to enhance of the cultivation efficiency of bifidobacteria.

  • PDF

Interaction of CFP with Metal ions: Complex Formation of CFP with Metal ion by Absorption and Fluorescence Spectrophotometery (속 이온과 CFP 상호작용: 흡수 형광 분광법에 의한 금속 이온과 CFP의 착물 형성)

  • Siddiqi, K.S.;Mohd, Ayaz;Khan, Aftab Aslam Parwaz;Bano, Shaista
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.152-158
    • /
    • 2009
  • Spectrophotometric investigation of the interaction of Cefpodoxime proxetil (CFP) with $Ca^{2+},\;Mg^{2+},\;Mn^{2+},\;Fe^{3+},\;Co^{2+},\;Ni^{2+},\;Cu^{2+}$ and $Zn^{2+}$ in acidic medium showed the formation of 1:1 complex. The absorption spectrum of pure drug exhibits two prominent peaks at 270 and 345 nm. Its spectra scanned at several pH exhibited two isosbestic points (305 and 330 nm) indicating the presence of zwitterionic condition of drug in solution phase. The fluorescence emission spectra of CFP in presence of different concentrations of metal ions showed enhancement in fluorescence intensity which is ascribed to chelating enhancement fluorescence effect (CHEF). The stoichiometry of the complexes was determined by Job’s and Benesi-Hildebrand method. The stability of the complexes follow the order $Ca^{2+}\;<\;Mg^{2+}\;<\;Co^{2+}\;<\;Ni^{2+}\;<\;Zn^{2+}\;<\;Mn^{2+}\;<\;Cu^{2+}\;<\;Fe^{3+}$.

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer

  • Shim, Il-Wun;Noh, Won-Tae;Kwon, Ji-Woon;Jo, Jung-Young;Kim, Kyung-Soo;Kang, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.563-566
    • /
    • 2002
  • Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.

Homogeneous Catalysis (IV). Hydrogenation of Acrylonitrile with trans-Chlorocarbonylbis(triphenylphosphine)rhodium(I)

  • Woo, Jin-Chun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.4
    • /
    • pp.169-171
    • /
    • 1983
  • It has been found that the acrylonitrile solution of trans-$RhCl(CO)(Ph_3P)_2$ produces propionitrile catalytically at $90^{\circ}C$ under $P_{H_2}$=3 atm. This catalytic hydrogenation proceeds only for a certain period of time producing ca. 50 moles of propionitrile per mole of the rhodium complex. The hydrogenation with trans-$RhCl(CO)(Ph_3P)_2$ in the presence of formaldehyde is much faster than in the absence of formaldehyde, and continues without a decrease in the rate for a prolonged period of time. It is suggested that the hydrogenation with trans-$RhCl(CO)(Ph_3P)_2$ proceeds through the unsaturated route initiated by the dissociation of CO from trans- $RhCl(CO)(Ph_3P)_2$ to give coordinatively unsaturated $RhCl(Ph_3P)_2$.

Effect of Groundwater Anions and pH on the Sorption Removal of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착제거에 대한 pH와 지하수 음이온의 영향)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Sorption characteristics of Pb, Cu, Cd, and Zn onto Ca- and Na-bentonites were investigated by the batch experiments in the condition of various pHs and concentrations of groundwater major anions (${So_4}^{2-}$ and ($HCO_3$), which can form a complex with heavy metals. The sorption removal of heavy metals steadily increases as pH increases. The sorption capability about heavy metals of both Ca-bentonite and Na-bentonite is in the order of Pb>Cu>Zn>Cd. The effect of pH and selectivity of heavy metals of bentonites were explained by the change of surface charge of bentonite and the speciation of heavy metals. Na-bentonite has a little higher sorption ability about heavy metals than that of Ca-bentonite. A high sorption removal of Pb in 0.1M sulfate solution may be attributed to the precipitation of $PbSo_4$(anglesite). However, sulfate has a slight effect on the sorption of CU, Cd and Zn. More than 99% of heavy metals were removed from the 0.1 M bicarbonate solution. However, the efficiency of sorption removal of heavy metals highly decreases in the bicarbonate solution of $10^{-2}$M to $10^{-4}$M. The speciation and saturation index calculated by the WATEQ4F program indicate that the sorption of anionic complexes such as ${Pb(CO_3)_2}^{2-}$, ${Cd(CO_3)_2}^{2-}$, ${Zn(CO_3)_2}^{2-}$, ${Cu(CO_3)_2}^{2-}$ and the precipitation of the solid phases such as $PbCO_3$(cerrusite), $ZnCO_3$(smithsonite), $CdCO_3$(obtavite) are involved in sorption removal of heavy metals in bicarbonate solution. The sorption capability about heavy metals of bentonites in the presence of anions shows the following order: Pb>Cu Cd>Zn.

  • PDF

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF