DOI QR코드

DOI QR Code

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer


Abstract

Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

Keywords

References

  1. El-Sall, M. S.; Slack, W. Macromolecules 1995, 28, 8456. https://doi.org/10.1021/ma00128a074
  2. Golden, J. H.; Deng, H.; DiSalvo, F. J.; Frechet, J. M. J.;Thompson, P. M. Science 1995, 268, 1463. https://doi.org/10.1126/science.268.5216.1463
  3. Martin, C. R. Chem. Mater. 1996, 1739.
  4. Sohn, B. H.; Cohen, R. E. Acta polymer 1996, 47, 340. https://doi.org/10.1002/actp.1996.010470804
  5. Regar, T. S.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 6929. https://doi.org/10.1021/ja000692r
  6. Lin, Y. S.; Ji, W.; Wang, Y.; Higgins, R. J. Ind. Eng. Chem.Res. 1999, 38, 2292. https://doi.org/10.1021/ie980662l
  7. Terry, K. W.; Lugmair, C. G.; Gantzel, P.K.; Tilley, T. D. Chem. Mater. 1996, 8, 274. https://doi.org/10.1021/cm9503700
  8. Shim, I. W.; Oh, W. S.; Jeong, H. C.; Seok, W. K. Macromolecules1996, 29, 1099. https://doi.org/10.1021/ma951233r
  9. Shim, I. W.; Kim, J. Y.; Kim, D. Y.; Choi, S. Reactive andFunctional Polymers 2000, 43, 71. https://doi.org/10.1016/S1381-5148(99)00003-6
  10. Shim, I. W.; Choi, S.; Noh, W. T.; Kwon, J.; Cho, J. Y.; Chae, D.Y.; Kim, K. S. Bull. Korean Chem. Soc. 2001, 22, 772.
  11. Shim, I. W.; Kim, D. Y.; Choi, S.; Kong, K. H.; Choe, J. I. Reactiveand Functional Polymers 2000, 43, 287 https://doi.org/10.1016/S1381-5148(99)00055-3
  12. Pouchet, C. J. The Aldrich Library of FT-IR Vapor Phase, 1stEd.; Aldrich Chemical Company, Inc.: Milwaukee, Wisconsin, U.S. A., 1983; Volume 3.
  13. Nyquist, R. A.; Kagel, R. O. Infrared Spectra of Inorganic Compounds (3800-45 $cm^{-1}$); Academic Press: New York, U. S. A., 1977; Vol. 4.
  14. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A&B, 5th Ed.; John Wiley & Sons, Inc.: New York, U. S. A., 1997.
  15. Barbucci, R.; Casolaro, M.; Corezzi, S.; Reginato, G. Polymer1986, 27, 1986. https://doi.org/10.1016/0032-3861(86)90195-3
  16. Drzewinski, M.; Macknight, W. J. J. Appl. Polym. Sci. 1985, 30,4735. https://doi.org/10.1002/app.1985.070301220
  17. Inorganic Syntheses; Allcock, H. R., Ed. in Chief; John Wiley & Sons, Inc.: New York, U. S. A., 1980; Vol. 20, p 53. https://doi.org/10.1002/9780470132517.ch16
  18. McNeill, K.; Bergman, R. G. J. Am. Chem. Soc. 1999, 121, 8260. https://doi.org/10.1021/ja983011p
  19. Iwamoto, M.; Yahiro, H.; Mizuno, N.; Zhang, W. X.; Mine, Y.;Furukawa, H.; Kagawa, S. J. Phys. Chem. 1992, 96, 9360. https://doi.org/10.1021/j100202a055
  20. Comprehensive Coordination Chemistry; Wilkinson, G. FRS. Ed. in Chief; Pergamon Press: Oxford, U. K, 1987; Vol. 5, p 566
  21. Encyclopedia of Inorganic Chemistry;Bruce King, R., Ed. in Chief; John Wiley & Sons, Inc.: New York,U. S. A., 1994; Vol. 2, p 822
  22. Safarik, D. J.; Eldridge, R. B. Ind. Eng. Chem. Res. 1998, 37, 2571. https://doi.org/10.1021/ie970897h
  23. Kudo, A.; Steinbery, M.; Bard, A. J.; Campion, A.; Fox, M. A.;Mallowk, T. E.; Webber, S. E.; White, J. M. J. Catal. 1990, 125, 565. https://doi.org/10.1016/0021-9517(90)90327-G

Cited by

  1. Nanocomposite Fibers Spun via an Effective Pathway vol.112, pp.12, 2008, https://doi.org/10.1021/jp711431h
  2. In Situ Synthesis of Oil-Based Polymer/Silver Nanocomposites by Photoinduced Electron Transfer and Free Radical Polymerization Processes vol.17, pp.4, 2010, https://doi.org/10.1163/092764410X495289
  3. Preparation and Evaluation of CuO/Chitosan Nanocomposite for Antibacterial Finishing Cotton Fabric vol.39, pp.3, 2010, https://doi.org/10.1177/1528083709103142
  4. In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy vol.18, pp.3, 2011, https://doi.org/10.1007/s10570-011-9513-3
  5. Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix vol.18, pp.4, 2011, https://doi.org/10.1007/s10570-011-9556-5
  6. Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals: preparation, characterization and properties vol.18, pp.5, 2011, https://doi.org/10.1007/s10570-011-9566-3
  7. Cu Nanoparticles From Evaporation of Cu Granule in a Microwave Torch Plasma at Atmospheric Pressure vol.39, pp.5, 2011, https://doi.org/10.1109/TPS.2011.2119330
  8. Synthesis and catalytic properties of mesoporous alumina supported aluminium chloride with controllable morphology, structure and component vol.19, pp.5, 2012, https://doi.org/10.1007/s10934-011-9510-9
  9. A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route vol.63, pp.1, 2012, https://doi.org/10.1007/s10971-012-2784-9
  10. Adsorption of Albumin on Silica Surfaces Modified by Silver and Copper Nanoparticles vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/839016
  11. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
  12. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040520
  13. leaf extraction for durable ultraviolet protection and antibacterial activity vol.87, pp.19, 2017, https://doi.org/10.1177/0040517516671124
  14. Construction of novel coordination polymers with simple ligands vol.33, pp.5, 2008, https://doi.org/10.1007/s11243-008-9086-7
  15. Efficient alternative of antimicrobial nanocomposites based on cellulose acetate/Cu-NPs vol.16, pp.3, 2018, https://doi.org/10.1080/1539445X.2018.1457540
  16. Characteristic of nanoparticle-chitosan system: solution and thin film study vol.160, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/160/1/012001
  17. Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles vol.101, pp.6, 2006, https://doi.org/10.1002/app.22650
  18. Synthesis and Alignment of Iron Oxide Nanoparticles in a Regenerated Cellulose Film vol.27, pp.24, 2006, https://doi.org/10.1002/marc.200600543
  19. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering vol.42, pp.1, 2007, https://doi.org/10.1140/epjd/e2007-00015-y
  20. Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose vol.84, pp.2, 2009, https://doi.org/10.1002/jctb.2037
  21. nanocomposite films vol.111, pp.5, 2009, https://doi.org/10.1002/app.29236
  22. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property vol.29, pp.17, 2018, https://doi.org/10.1080/09205063.2018.1528518
  23. Preparation of Silver Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Silver Complexes in the Polymer vol.26, pp.5, 2002, https://doi.org/10.5012/bkcs.2005.26.5.837
  24. Investigations into Sulfobetaine-Stabilized Cu Nanoparticle Formation: Toward Development of a Microfluidic Synthesis vol.109, pp.19, 2002, https://doi.org/10.1021/jp044777g
  25. Preparation of Cu Nanoparticles from Cu Powder Dispersed in 2-Propanol by Laser Ablation vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1869
  26. Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose vol.86, pp.4, 2002, https://doi.org/10.1016/j.carbpol.2011.07.015
  27. Copper Nanoparticles: Synthetic Strategies, Properties and Multifunctional Application vol.13, pp.2, 2002, https://doi.org/10.1142/s0219581x14300016
  28. Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles vol.12, pp.5, 2002, https://doi.org/10.3390/ma12050804
  29. Microwave-assisted solvothermal in-situ synthesis of CdS nanoparticles on bacterial cellulose matrix for photocatalytic application vol.27, pp.10, 2002, https://doi.org/10.1007/s10570-020-03196-5
  30. Magnetically driven release of dopamine from magnetic-non-magnetic cellulose beads vol.320, pp.1, 2002, https://doi.org/10.1016/j.molliq.2020.114290
  31. Magnetically responsive antibacterial nanocrystalline jute cellulose nanocomposites with moderate catalytic activity vol.251, pp.None, 2002, https://doi.org/10.1016/j.carbpol.2020.117024