• 제목/요약/키워드: $Ca^{++}$ antagonist

검색결과 174건 처리시간 0.024초

Antihypertensive Effect of Amlodipine Adipate, a Novel Salt of Amlodipine, in Hypertensive Rat Models

  • Lee, Byung-Ho;Seo, Ho-Won;Chae, Myeong-Yun;Yeon, Kyu-Jeong
    • Biomolecules & Therapeutics
    • /
    • 제12권1호
    • /
    • pp.19-24
    • /
    • 2004
  • The vascular relaxant effect of amlodipine adipate, a new salt of amlodipine, was evaluate in isolated rat aorta, and compared with that of amlodipine besylate. Furthermore, antihypertensive effects were measured in hypertensive rat models, such as spontaneously hypertensive rats (SHR) and rena1 hypertensive rats (RHR). Amlodipine adipate concentration-dependently inhibited $Ca^{2+}$-induced contraction of rat aorta with a very slow onset of action (reached its maximum at 3.5 h;$IC_{50}$: 3.76 nM), having a pattern and a potency similar to those of amlodipine besylate ($IC_{50}$: 4.01 nM). In SHR and RHR, orally administered amlodipine adipate produced a dosedependent and long-lasting (>10-24 h) antihypertensive effect ($ED_{20}$: 2.48 and 1.57 mg/kg, respectively), with a pattern and a potency similar to those of amlodipine besylate ($ED_{20}$: 2.50 and 1.99 mg/kg in SHR and RHR, respectively). These results suggest that amlodipine adipate is a potent and long-lasting antihypertensive agent and that its antihypertensive effect is not significantly different to that of amlodipine besylate.

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF

Glycine induces enhancement of bactericidal activity of neutrophils

  • Kang, Shin-Hae;Ham, Hwa-Yong;Hong, Chang-Won;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.229-238
    • /
    • 2022
  • Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 μM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli. Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.

The effect of dehydroepiandrosterone administration on intestinal calcium absorption in ovariectomized female rats

  • Hattori, Satoshi;Park, Suhan;Park, Jong-hoon;Omi, Naomi
    • 운동영양학회지
    • /
    • 제24권4호
    • /
    • pp.24-27
    • /
    • 2020
  • [Purpose] Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist. [Methods] Female Sprague-Dawley rats (n=23, 6 weeks old) were randomized into three groups: OVX control group (OC, n=7), OVX with DHEA treatment group (OD, n=8), and OVX with DHEA inhibitor group (ODI, n=8) for 8 weeks. [Results] Intestinal calcium accumulation, as well as the rate of absorption, demonstrated no significant differences during the experimental period among investigated groups. The bone mineral density (BMD) of the tibia at the proximal metaphysis was higher in the OD group than that in the OC group (p<0.05); however, BMD of the ODI group showed no significant difference from investigated groups. Furthermore, the BMD of the tibia at the diaphysis did not significantly differ among these groups. [Conclusion] We revealed that DHEA administration does not involve intestinal Ca absorption, although this treatment improves BMD levels in OVX rats. These observations indicate that the effect of DHEA on the bone in postmenopausal women is solely due to its influence on bone metabolism and not intestinal calcium absorption.

기니피그 유문동에서 기록되는 억제성 접합부 전압에 미치는 전해질과 약물의 효과 (Effects of Electrolytes and Drugs on the Inhibitory Junction Potentials Recorded from the Antrum of Guinea-pig Stomach)

  • 구용숙;서석효;이석호;황상익;김기환
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 1990
  • 기니피그 유문동 부위를 절제한 뒤 점막층을 박리하고 윤상근 주행방향으로 길이 10 mm, 너비 2 mm 되는 조직 절편을 만들어 수평형 실험용기에 넣어 핀으로 고정하였다. 유리미세전극을 세포내에 삽입하여 서파를 기록하면서 조직양편에 설치한 백금자극전극(직경 0.5 mm)에 강도 $10{\sim}50V$, 기간 $50{\sim}100\;{\mu}s$ 되는 자극파를 주어 신경-근 부위의 접합부 전압을 기록하여 다음과 같은 결과를 얻었다. 1) 위저부에서는 흥분성 접합부 전압이, 유문동에서는 억제성 접합부 전압이 기록되었고 유문동의 억제성 접합부 전압은 atropine($10^{-6}\;M)$과 guanethidine$(5{\times}10^{-6}\;M)$을 동시 처치했을 때 영향을 받지 않았다. 2) 세포외 $Ca^{2+}$ 농도를 높였을 때(7 mM)는 억제성 접합부 전압의 크기가 증가하고 세포외 $Mg^{2+}$ 농도를 높였을 때(5 mM)와 verapamil($10^{-5}\;M$)을 주었을 때는 억제성 접합부 전압의 크기가 감소하였다. 3) 아데노신을 투여하였을 때와 ATP를 투여했을 때는 모두 억제성 접합부 전압의 크기가 감소하였다. 4) 5-HT$(10^{-6}\;M)$을 투여했을 때는 서파크기에는 변화없이 억제성 접합부 전압의 크기만 감소하였고 5-HT type 2 길항제인 ketanserin$(5{\times}10^{-6}\;M)$을 투여했을 때는 서파크기는 현저히 감소한 반면 억제성 접합부 전압크기는 변화가 없었다. 이상의 결과로부터 유문동에서 기록되는 억제성 접합부 전압은 비아드레날린, 비콜린 동작성 신경에 의해 유발되며 $Ca^{2+}$은 비아드레날린 비콜린 동작성 신경에서 신경흥분전달물질의 유리를 촉진시키고 분비된 신경흥분전달물질로 인해 $Ca^{2+}$ 의존성 $K^{+}$ 통로가 활성화되어 억제성 접합부 전압의 크기를 증가시킨다고 사료된다.

  • PDF

돼지 난관협부 평활근의 운동성에 대한 acetylcholine, norepinephrine, histamine 및 prostaglandin F2α의 작용 (Actions of acetylcholine, norepinephrine, histamine and prostaglandin F2α on motility of pig oviductal isthmic smooth muscle)

  • 노규진;박상은;심철수;김주헌;최상용
    • 대한수의학회지
    • /
    • 제34권3호
    • /
    • pp.493-500
    • /
    • 1994
  • The purpose of this study was to investigate the effects of neurotransmitters and the source of $Ca^{2+}$ in the effects of neurotransmitters on the motility of pig oviductal isthmic smooth muscle. The motility of the isolated smooth muscle was recorded by using physiological recording system. The results were summarized as follows; Acetylcholine, norepinephrine, histamine and prostaglandin $F_{2{\alpha}}(PGF_{2{\alpha}})$ caused the contraction and the contractile responses were increased in a dose-dependent manner from the concentration of $10^{-7}$ to $10^{-4}M$. The maximum contractility of acetylcholine, norepinephrine, histamine and $PGF_{2{\alpha}}$ was 65.99, 28.66, 83.99 and 47.33% of 100 mM K contraction, respectively. The contractile response induced by acetylcholine$(10^{-6}M)$ was completely blocked by the pretreatment with cholinergic receptor blocker, atropine$(10^{-6}M)$, the contractile response induced by norepinephrine$(10^{-5}M)$ was blocked by the pretreatment with ${\alpha}$-adrenergic receptor blocker, phentolamine$(10^{-6}M)$ but was not blocked and rather increased by the pretreatment with ${\beta}$-adrenergic receptor blocker. propranolol$(10^{-6}M)$, the contractile response induced by histamine$(10^{-6}M)$ was completely blocked by the pretreatment with $H_1$-histaminergic receptor blocker, pyrilamine$(10^{-6}M)$ but was increased by the pretreatment with $H_2$-histaminergic receptor blocker, cimetidine$(10^{-6}M)$. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was weakly contracted response in $Ca^{2+}$-free medium, but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was disappeared. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was powerfully depressed by the pretreatment with $Ca^{2+}$-channel blocker, verapamil$(10^{-5}M)$ but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was completely inhibited.

  • PDF

Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

  • Shin, Dong-Hyun;Leem, Dong-Gyu;Shin, Ji-Sun;Kim, Joo-Il;Kim, Kyung-Tack;Choi, Sang Yoon;Lee, Myung-Hee;Choi, Jung-Hye;Lee, Kyung-Tae
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.165-174
    • /
    • 2018
  • Background: Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of $eIF2{\alpha}$ and protein levels of GRP78/BiP, XBP-1S, and $IRE1{\alpha}$ in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular $Ca^{2+}$ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular $Ca^{2+}$ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.

기니픽 유두근에서 α1-adrenoceptor 자극에 의한 세포내 pH와 Na+ 증가는 Na+-H+ 교환기를 경유 (α1-adrenoceptor stimulation increases intracellular pH and Na+ via Na+-H+ exchange in guinea pig papillary muscle)

  • 김진상
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.229-236
    • /
    • 1995
  • The effect of ${\alpha}_1$-adrenoceptor(${\alpha}_1$-AR) stimulation on intracellular pH($pH_i$), $Na^+$ activity($a_{Na}{^i}$) and contractility were investigated in isolated papillary muscles of euthyroid or hyperthyroid guinea pig with conventional microelectrode, $Na^+$ or $H^+$-selective microelectrodes, and tension transducer. Stimulation of the ${\alpha}_1$-AR by phenylephrine produced a decrease in $a_{Na}{^i}$ in euthyroid preparations. This decrease in $a_{Na}{^i}$ was abolished in presence of PKC activator, phorbol dibutyrate, and increased contrary to decrease. Phenylephrine also increased $a_{Na}{^i}$ in hyperthyroid ones. However, phenylrephtine produced an increase in $pH_i$ in both euthyroid and hyperthyroid ones. These changes were blocked by prazosin, an antagonist of ${\alpha}_1$-AR. These findings suggest that the changes in $a_{Na}{^i}$ and $pH_i$ are mediated by a stimulation of $Na^+-H^+$ exchange via ${\alpha}_1$-AR stimulation. This study focused on the increase in $a_{Na}{^i}$, $pH_i$ and contractility. The increase in $pH_i$ was blocked by amiloride or EIPA, $Na^+-H^+$ exchange inhibitors. Therefore, the increase in $a_{Na}{^i}$ and $pH_i$ mediated by ${\alpha}_1$-AR appeared to be due to an influx of $Na^+$ and a reduction of $H^+$ through $Na^+-H^+$ exchange. This study also revealed that the increase in $pH_i$ and $a_{Na}{^i}$ might be related to the sustained positive inotropic response. The $a_{Na}{^i}$ increase may contribute to the intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchange, and the $pH_i$ increase could cause an increase in the $Ca^{2+}$ sensitivity of myofilaments and may augment the ${\alpha}_1$-AR-mediated positive inotropic response.

  • PDF

허혈이 유발된 흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할 (The Role of Adenosine Receptor on Acetylcholine Release from Ischemic-Induced Rat Hippocampus)

  • 최봉규;김도경;강헌;전재민;강연욱
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.127-138
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked acetylcholine(ACh) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 2 min), and the influence of various agents on the evoked tritiumoutflow was investigated. Ischemia(10 min with 95% $N_2$ + 5% $CO_2$) increased both the basal and evoked ACh release. These increases were abolished by glucose addition into the superfused medium, and they significantly inhibited either by 0.1 & $0.3{\mu}M$ TTX pretreatment or by removing $Ca^{++}$ in the medium. MK-801($1{\sim}10{\mu}M$), a specific NMDA receptor antagonist, and glibenclamide $(1{\mu}M)$, a $K^+-channel$ inhibitor, did not alter the evoked ACh release and nor did they affect the ischemia-induced increases In ACh release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, significantly inhibited the effects of ischemia on the evoked ACh release. Adenosine and $N^6-cyclopentyladenosine$ decreased the ACh release in a dose dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal(normoxic) condition. However, the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist, potentiated the ischemia-effect. These results indicate that the evoked-ACh release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decreased effect of ACh release mediated by $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

Gintonin-mediated release of astrocytic vascular endothelial growth factor protects cortical astrocytes from hypoxia-induced cell damages

  • Choi, Sun-Hye;Kim, Hyeon-Joong;Cho, Hee-Jung;Park, Sang-Deuk;Lee, Na-Eun;Hwang, Sung-Hee;Rhim, Hyewon;Kim, Hyoung-Chun;Cho, Ik-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.305-311
    • /
    • 2019
  • Background: Gintonin is a ginseng-derived exogenous ligand of the G protein-coupled lysophosphatidic acid (LPA) receptor. We previously reported that gintonin stimulates gliotransmitter release in primary cortical astrocytes. Astrocytes play key roles in the functions of neurovascular systems. Although vascular endothelial growth factor (VEGF) is known to influence the normal growth and maintenance of cranial blood vessels and the nervous system, there is little information about the effect of gintonin on VEGF regulation in primary astrocytes, under normal and hypoxic conditions. Methods: Using primary cortical astrocytes of mice, the effects of gintonin on the release, expression, and distribution of VEGF were examined. We further investigated whether the gintonin-mediated VEGF release protects astrocytes from hypoxia. Results: Gintonin administration stimulated the release and expression of VEGF from astrocytes in a concentration- and time-dependent manner. The gintonin-mediated increase in the release of VEGF was inhibited by the LPA1/3 receptor antagonist, Ki16425; phospholipase C inhibitor, U73122; inositol 1,4,5- triphosphate receptor antagonist, 2-APB; and intracellular $Ca^{2+}$ chelator, BAPTA. Hypoxia further stimulated astrocytic VEGF release. Gintonin treatment stimulated additional VEGF release and restored cell viability that had decreased due to hypoxia, via the VEGF receptor pathway. Altogether, the regulation of VEGF release and expression and astrocytic protection mediated by gintonin under hypoxia are achieved via the LPA receptor-VEGF signaling pathways. Conclusion: The present study shows that the gintonin-mediated regulation of VEGF in cortical astrocytes might be neuroprotective against hypoxic insults and could explain the molecular basis of the beneficial effects of ginseng on the central nervous system.