Antihypertensive Effect of Amlodipine Adipate, a Novel Salt of Amlodipine, in Hypertensive Rat Models

  • Lee, Byung-Ho (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Ho-Won (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Chae, Myeong-Yun (R&D Center of Pharmaceuticals, CJ Corp.) ;
  • Yeon, Kyu-Jeong (R&D Center of Pharmaceuticals, CJ Corp.)
  • Published : 2004.03.01

Abstract

The vascular relaxant effect of amlodipine adipate, a new salt of amlodipine, was evaluate in isolated rat aorta, and compared with that of amlodipine besylate. Furthermore, antihypertensive effects were measured in hypertensive rat models, such as spontaneously hypertensive rats (SHR) and rena1 hypertensive rats (RHR). Amlodipine adipate concentration-dependently inhibited $Ca^{2+}$-induced contraction of rat aorta with a very slow onset of action (reached its maximum at 3.5 h;$IC_{50}$: 3.76 nM), having a pattern and a potency similar to those of amlodipine besylate ($IC_{50}$: 4.01 nM). In SHR and RHR, orally administered amlodipine adipate produced a dosedependent and long-lasting (>10-24 h) antihypertensive effect ($ED_{20}$: 2.48 and 1.57 mg/kg, respectively), with a pattern and a potency similar to those of amlodipine besylate ($ED_{20}$: 2.50 and 1.99 mg/kg in SHR and RHR, respectively). These results suggest that amlodipine adipate is a potent and long-lasting antihypertensive agent and that its antihypertensive effect is not significantly different to that of amlodipine besylate.

Keywords

References

  1. Abernethy, D. R. (1989). The pharmacokinetic profile of amlodipine. Am. Heart J. 118, 1100-1103 https://doi.org/10.1016/0002-8703(89)90834-X
  2. Burges, R. A., Gardiner, D. G., Gwilt, M., Higgins, A. J., Blackburn, K. J., Campbell, S. F., Cross, P. E. and Stubbs, J. K. (1987). Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors J. Cardiavasc. Pharmacal. 9, 110-119
  3. Burges, R. and Moisey, D. (1994). Unique pharmacologic properties of amlodipine. Am. J. Cardial. 73, 2A-9A https://doi.org/10.1016/0002-9149(94)90268-2
  4. Cangiano, J. L., Rodriguez-Sargent, C. and Martinez-Maldonado, M. (1979). Effects of antihypertensive treatment on systolic blood pressure and renin in experimental hypertension in rats. J. Pharmacal. Exp. Ther. 208, 310-313
  5. Cauvin, C., Loutzenhiser, R. and Van Breemen C. (1983). Mechanisms of calcium antagonist-induced vasodilation. Annu. Rev. Pharmacal. Toxical. 23, 373-396 https://doi.org/10.1146/annurev.pa.23.040183.002105
  6. Dodd, M. G., Gardiner, D. G., Carter, A. J., Sutton, M. R. and Burges, R. A. (1989). The hemodynamic properties of amlodipine in anesthetised and conscious dogs: comparison with nitrendipine and influence of beta-adrenergic blockade. Cardiovasc. Drugs Ther. 3, 545-555 https://doi.org/10.1007/BF01865514
  7. Lee, B. H. and Shin, H. S. (1994). In vivo pharmacological evaluation of newly synthesized nonpeptidic AT1 receptor antagonists in rats. Arch. Pharm. Res. 17, 263-268 https://doi.org/10.1007/BF02980458
  8. Lee, B. H., Yoo, S. E. and Shin, H. S. (1998). Hemodynamic profile of SKP-450, a new potassium-channel activator. J. Cardiovase. Pharmacol. 31, 85-94 https://doi.org/10.1097/00005344-199801000-00013
  9. Lee, B. H., Seo, H. W., Kwon, K. J., Yoo, S. E. and Shin, H. S. (1999). In vivo pharmacologic profile of SK-1080, an orally active nonpeptide AT1-receptor antagonist. J. Cardiovasc. Phannacol. 33, 375-382 https://doi.org/10.1097/00005344-199903000-00005
  10. Lee, B. H., Seo, H. W., Yoo, S. E., Kim, S. O., Lim, H. and Shin, H. S. (2001). Differential action of KR-31378, a novel potassium channel activator, on cardioprotective and hemodynamic effects. Drug Dev. Res. 54, 182-190 https://doi.org/10.1002/ddr.10028
  11. Mathur, S., Syme, H., Brown, C. A, Elliot, J., Moore, P. A, Newell, M. A, Munday, J. S., Cartier, L. M., Sheldon, S. E. and Brown, S. A (2002). Effects of the calcium channel antagonist amlodipine in cats with surgically induced hypertensive renal insufficiency. Am. J. Vet. Res. 63, 833-839 https://doi.org/10.2460/ajvr.2002.63.833
  12. Meredith, P. A and Elliott, H. L. (1992). Clinical pharmacokinetics of amlodipine. Clin. Phannacokinet. 22,22-31 https://doi.org/10.2165/00003088-199222010-00003
  13. Phillips, R. A., Kloner, R. A., Grimm, R. H. Jr. and Weinberger, M. (2003). The effects of amlodipine compared to losartan in patients with mild to moderately severe hypertension. J. Clin. Hypertens. (Greenwich) 5, 17-23
  14. Shin, H. S., Seo, H. W., Yoo, S. E. and Lee, B. H. (1998). Cardiovascular pharmacology of SKP-450, a new potassium channel activator, and its major metabolites SKP-818 and SKP-310. Phannacology 56, 111-124
  15. Stopher, D. A., Beresford, A. P., Macrae, P. V. and Humphrey, M. J. (1988). The metabolism and pharmacokinetics of amlodipine in humans and animals. J. Cardiovasc. Pharmacol. 12, S55-S59 https://doi.org/10.1097/00005344-198812007-00012
  16. Yamanaka, K., Suzuki, M., Munehasu, S. and Ishiko, J. (1991). Antihypertensive effects of amlodipine, a new calcium antagonist. Nippon Yakurigaku Zasshi 97, 115-126 https://doi.org/10.1254/fpj.97.2_115