• 제목/요약/키워드: $C_4$ pathway

검색결과 916건 처리시간 0.031초

홑파래로부터 추출한 Rhamnan Sulfate의 항보체 활성 (Anticomplementary Activities of Rhamnan Sulfate extracted from Monostroma nitidum)

  • 빈재훈;김현대;류병호
    • 한국식품영양학회지
    • /
    • 제9권4호
    • /
    • pp.490-495
    • /
    • 1996
  • 홑파래로부터 황산기를 함유한 다당체를 크로마토그래프로 분리정제하여 rhamnan sulfate가 항보체 활성화에 미치는 영향을 조사하였다. 항보체 활성능력은 F-4-3 획분을 비교군으로 Heparin H-180, Dextran과 비교해 결과 비교군보다 높았고, C4a와 C3a의 C convertase의 형성과 기능을 F-4-3 획분이 억제하였다. 이러한 보체 활성화 양식은 classical pathway 및 alternative pathway로도 경유함을 알 수 있었다.

  • PDF

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구 (MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid)

  • 박시재;이승환;오영훈;이상엽
    • KSBB Journal
    • /
    • 제29권4호
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

한지형 마늘의 인경 발육 과정에서 내생 지베렐린류의 함량변화 (Changes in Endogenous Gibberellin Contents during Bulb Development Period in the Cold-type Cultivar of Garlic (Allium sativum L.) of Korea)

  • 손은영;김윤하;김병수;서동환;이현숙;이인중
    • 원예과학기술지
    • /
    • 제28권5호
    • /
    • pp.750-756
    • /
    • 2010
  • 마늘의 안정적 수량 확보와 품질향상 방안을 모색하고자 마늘의 인경 비대에 관여하는 요인을 구명하기 위해 본 연구를 수행하였다. 한지형 마늘의 인편 분화기에서 인편 비대 최성기까지 식물체내 호르몬 함량의 변화를 조사하여 생육 특성과의 연관성을 구명한 결과는 다음과 같다. 마늘 식물체(엽신과 엽초)의 GA 함량을 GC-MS로 동정한 결과 마늘 식물체에서 18종 이상의 GA를 확인하였다. GA 함량은 마늘에 고등식물체에서 주로 존재하는 두 생합성 경로가 모두 존재하는 것으로 확인되었으며, 생리활성 $GA_4$를($7.25ng{\cdot}g^{-1}$ D.W.) 생합성 하는 non C-13 hydroxylation pathway(NCH)가 $GA_1$을($2.97ng{\cdot}g^{-1}$ D.W.) 생합성 하는 early C-13 hydroxylation pathway (ECH) 보다 우세한 것으로 조사되었다. 한지형 의성마늘 인경 분화 및 비대 시 식물체내 호르몬 변화를 조사한 결과 total GA 함량은 인편 분화기부터 비대개 시기까지 점진적으로 증가하다가 인경이 비대되는 동안 점차 감소하였다. 생리활성 GA인 $GA_4$$GA_1$의 함량은 총 GA 함량과 같은 경향으로 변화하여 인경 비대와 밀접한 연관이 있는 것으로 나타났다. 마늘 생장 양상과 엽초의 호르몬 변화 양상은 유사한 경향을 보여 엽초의 호르몬 변화가 마늘 생장과 밀접한 연관이 있음을 보여주었다.

Crystal Structure of Mesaconyl-CoA Hydratase from Methylorubrum extorquens CM4

  • Jae-Woo Ahn;Jiyeon Hong;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.485-492
    • /
    • 2023
  • Methylorubrum extorquens, a facultative methylotroph, assimilates C1 compounds and accumulates poly-β-hydroxylbutyrate (PHB) as carbon and energy sources. The ethylmalonyl pathway is central to the carbon metabolism of M. extorquens, and is linked with a serine cycle and a PHB biosynthesis pathway. Understanding the ethylmalonyl pathway is vital in utilizing methylotrophs to produce value-added chemicals. In this study, we determined the crystal structure of the mesaconyl-CoA hydratase from M. extorquens (MeMeaC) that catalyzes the reversible conversion of mesaconyl-CoA to β-methylmalyl-CoA. The crystal structure of MeMeaC revealed that the enzyme belongs to the MaoC-like dehydratase domain superfamily and functions as a trimer. In our current MeMeaC structure, malic acid occupied the substrate binding site, which reveals how MeMeaC recognizes the β-methylmalyl-moiety of its substrate. The active site of the enzyme was further speculated by comparing its structure with those of other MaoC-like hydratases.

Detection of Wound-inducible Trans-Cinnamic Acid-4-Hydroxylase in Avocado, Persea americana, Roots

  • Joo, Eun-Young
    • Preventive Nutrition and Food Science
    • /
    • 제2권4호
    • /
    • pp.333-337
    • /
    • 1997
  • Trans-cinnamic acid-4-hydroxylase(tC4H) is the first cytochrome P450-dependent monooxygenase of the phenylpropanoid pathway. The roots of avocado seedlings were wounded and examined to determine whether the tC4H would be activated in response to wounding and/or whether tC4H activity be modulated by the application of exogenous p-coumarate. At the specified length of times, the wounded and treated roots were either frozen in liquid nitrogen or used immediately to extract microsomal proteins. The microsomal proteins were subjected to immunoblot analysis using polyclonal antibodies against CYP73 of tC4H gene. In this study, tC4H was induced in wounded roots sealed in bags within 6 hours, and in low level({TEX}$10^{-8}${/TEX}M) of p-coumarate solution within 24 hours, whereas the olution without p-coumarate and high levels of p-coumarate solution repressed tC4H induction in wounded roots. These results indicate that tC4H is induced by wounding in the root of avocado, and is inhibited by the application of exogenous p-coumarate.

  • PDF

A Pathway for 4-Chlorobenzoate Degradation by Pseudomonas sp. S-47

  • Seo, Dong-In;Chae, Jong-Chan;Kim, Ki-Pil;Kim, Young-Soo;Lee, Ki-Sung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.96-100
    • /
    • 1998
  • Pseudomonas sp. S-47 degraded 4-chlorobenzoate (4CBA) to 4-chlorocatechol (4CC) that was subsequently ring-cleaved to form 5-chloro-2-hydroxymuconic semialdehyde. These intermediate compounds were identified by GC-mass spectrometry and UV-visible spectrophotometry. 5-chloro-2-hydroxymuconic acid converted from 5-chloro-2- hydroxymuconic semialdehyde (5C-2HMS) was dechlorinated to produce 2-hydroxypenta-2,4-dienoic acid (2HP-2,4DA) by the strain. These results indicate that Pseudomonas sp. S-47 degrades 4CBA to 2HP-2,4DA via a novel pathway including the meta-cleavage of 4CC and dechlorination of 5C-2HMS.

  • PDF

Nectandrin A Enhances the BMP-Induced Osteoblastic Differentiation and Mineralization by Activation of p38 MAPK-Smad Signaling Pathway

  • Kim, Do Yeon;Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.447-453
    • /
    • 2013
  • Osteoblastic activity of nectandrin A was examined in C2C12 cells. Nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization, manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and increased calcium contents. In C2C12 cells co-transfected with expression vector encoding Smad4 and Id1-Luc reporter, nectandrin A increased Id1 luciferase activity in a concentration-dependent manner, when compared to that in BMP-2 treated cells, indicating that Smad signaling pathway is associated with nectandrin A-enhanced osteoblastic differentiation in C2C12 cells. In addition, nectandrin A activated p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and phosphorylated form of pSmad1/5/8 and alkaline phosphatase activity were both decreased when the cells were pretreated with SB203580, a p38 MAPK inhibitor, suggesting that p38 MAPK might be an upstream kinase for Smad signaling pathway. Taken together, nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization of C2C12 cells via activation of p38 MAPK-Smad signaling pathway, and it has a therapeutic potential for osteoporosis by promoting bone formation.

광합성세균 균체대사산물의 자원화에 대한 기초적 연구 (A Fundamental Study on Utilization of Photosynthetic Bacteria Metabolites)

  • 최경민;양재경;박응로;배진우;서용기;이성택
    • 유기물자원화
    • /
    • 제5권1호
    • /
    • pp.63-69
    • /
    • 1997
  • 5-Aminolevulinic acid (ALA) 생합성의 $C_5$ 경로의 전구물질인 L-glutamic acid가 Rhodospirillum rubrum N-1 새포내에서 ALA 생산의 역할을 검토하였다. Lascelles의 기본배지에 L-glutamic acid와 levulinic acid (LA)를 각각 30, 20 mM 첨가배양으로써 균체외 ALA 생산성이 40배 증가(76 mg/l)하였다. 한편 $C_4$ 경로의 기질인 glycine과 succinic acid를 대수기 중기에 각각 60 mM 첨가함으로써, 균의 증식은 억제되었으나 균체외의 ALA는 52 mg/l에 달하였다.

  • PDF