• Title/Summary/Keyword: $C_2$ Dissociation

Search Result 245, Processing Time 0.019 seconds

Effects of SiO2 and 3Y-TZP on Mechanical Properties of Zircon (SiO2와 3Y-TZP 첨가가 지르콘의 기계적 물성에 미치는 영향)

  • Jang, Ho Su;Cho, Bum Rae
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.182-186
    • /
    • 2016
  • Zircon, having excellent thermal, chemical, and mechanical properties, is utilized in refractory materials, electronic materials, chemical machines, structural materials, etc. However, zircon generally shows thermal dissociation to zirconia($ZrO_2$) and silica($SiO_2$) around the sintering temperature of $1540^{\circ}C$, and when zircon particles are small and impurities are present, thermal dissociation is known to occur at around $1100^{\circ}C$. This reduces the mechanical properties of $ZrSiO_4$. In this research, the effect of adding $SiO_2$ and 3Y-TZP to $ZrSiO_4$ has been studied in order to suppress dissociation and improve the mechanical properties. Addition of $SiO_2$ suppressed the dissociation of $ZrSiO_4$ at lower temperatures. It also enabled optimum packing between the particles, resulting in a dense microstructure and good mechanical properties. When 3Y-TZP was added, recombination with the dissociated $SiO_2$ resulted in good mechanical properties by suppressing the generation of pores and the densification of the microstructure.

Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing

  • Kwon, Gyemin;Kwon, Hyuksu;Lee, Jihye;Han, Sang Yun;Moon, Bongjin;Oh, Han Bin;Sung, Bong June
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.770-774
    • /
    • 2014
  • The bond dissociation energy (BDE) of the chemical bond between the carbon and oxygen atoms of a simple TEMPO-derivative is calculated by employing the density functional theory, the $2^{nd}$ order M${\phi}$ller-Plesset (MP2) perturbation theory, and complete basis set (CBS) methods. We find that BDE of the positive ion of the TEMPO-derivative is larger at least by 7 kcal/mol than that of the negative ion, which implies that the dissociation reaction rate of the positive ion should be slower than that of the negative ion. Such theoretical predictions are contrary to the results of our previous experiments (Anal. Chem. 2013, 85, 7044), in which the larger energy was required for negative o-TEMPO-Bz-C(O)-peptides to undergo the dissociation reactions than for the positive ones. By comparing our theoretical results to those of the experiments, we conclude that the dissociation reaction of o-TEMPO-Bz-C(O)-peptide should occur in a complicated fashion with a charge, either positive or negative, probably being located on the amino acid residues of the peptide.

The Effect of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (2) Dissociation Constants of Some Substituted Naphthols in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향. (2) 수용액중에서 몇가지 치환나프톨류의 해리상수)

  • Jung-Ui Hwang;Zun-Ung Bae;Jong-Jae Chung;Jae-Won Jung;Kyung-Hee Chang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.152-158
    • /
    • 1986
  • The dissociation constants of 4-Cl-1-naphthol, 6-Br-2-naphthol and $8-NH_2-2-naphthol$ in aqueous solution were measured by spectroscopic method in the temperature range from 25 to 40${\circ}C$ and pressure up to 2000bar. The dissociation constants were decreased as the substituents were inserted in naphthol f rom $4.4{\times}10^{-10}\;to\;5.82{\times}10^{-11}$ as chloride compound and $2.5{\times}10^{-10}\;to\;3.44{\times}10^{-11}\;or\;4.21{\times}10^{-11}$ as bromine or amino compounds, respectively. This decrease can be explained with the I-or R-effects of substituents. From the dissociation constants various thermodynamic properties were calculated and discussed the characteristics of the dissociation reaction.

  • PDF

The Effects of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids (VII). Dissociation Constants of Some ${\omega}$-Amino Acid in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향 (제 7 보). 수용액중에서 몇가지 ${\omega}$-아미노산의 해리)

  • Jung Ui Hwang;Young Woo Kwak;Jae Won Jung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.343-349
    • /
    • 1989
  • The dissociation constants of ${\beta}$-alanine and ${\gamma}$-aminobutyric acid were measured in the temperature range from 20 to $40^{\circ}C$ and pressure up to 2,500 bar by conductometric method. The both dissociation constants of respective amino acid increase with temperature increase but pressure effect is not same as the temperature. The $K_1$ increases as pressure increases but $K_2$ decreases. The properties of these amino acids were discussed in terms of the thermodynamic properties of the dissociation reaction. A relationship between the dissociation constants and the distance between substituted groups of amino acid was discussed. The substituted effects of the reaction were deduced from Hammett reaction and substituted constants which were calculated from the measured dissociation constants.

  • PDF

Effects of Trypsin, Collagenase and Dimethyl Sulfoxide on Dissociation of Rat Heart Cells (배양을 위한 심근세포분리에 미치는 Trypsin, Collagenase와 Dimethyl Sulfoxide의 영향)

  • Park, Chang-Woo;Lee, Yung-Chang
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 1987
  • New born rat heart cells were dissociated using trypsin and/or collegenase to elucidate the dissociation efficiency of these two enzymes. And the effect of dimethyl sulfoxide during and immediately after cell dissociation was also investigated to clarify the so-called protective activity of dimethyl sulfoxide on cell performance. The results can be summarized as follows. 1. Cold trypsin 18 hours pretreatment followed by warm collagenase treatment resulted best cell viability and cell yield. 2. Single, warm trypsin treatment gave the poorest result. 3. Dimethyl sulfoxide did not seem to play any protective role during or immediately after rat heart cell dissociation. It had very damaging effect on rat heart cells.

  • PDF

Analysis of Amyloid Beta 1-16 (Aβ16) Monomer and Dimer Using Electrospray Ionization Mass Spectrometry with Collision-Induced Dissociation

  • Kim, Kyoung Min;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2022
  • The monomer and dimer structures of the amyloid fragment Aβ(1-16) sequence formed in H2O were investigated using electrospray ionization mass spectrometry (MS) and tandem MS (MS/MS). Aβ16 monomers and dimers were indicated by signals representing multiple proton adduct forms, [monomer+zH]n+ (=Mz+, z = charge state) and [dimer+zH]z+ (=Dz+), in the MS spectrum. Fragment ions of monomers and dimers were observed using collision-induced dissociation MS/MS. Peptide bond dissociation was mostly observed in the D1-D7 and V11-K16 regions of the MS/MS spectra for the monomer (or dimer), regardless of the monomer (or dimer) charge state. Both covalent and non-covalent bond dissociation processes were indicated by the MS/MS results for the dimers. During the non-covalent bond dissociation process, the D3+ dimer complex was separated into two components: the M1+ and M2+ subunits. During the covalent bond dissociation of the D3+ dimer complex, the b and y fragment ions attached to the monomer, (M+b10-15)z+ and (M+y9-15)z+, were thought to originate from the dissociation of the M2+ monomer component of the (M1++M2+) complex. Two different D3+ complex geometries exist; two distinguished interaction geometries resulting from interactions between the M1+ monomer and two different regions of M2+ (the N-terminus and C-terminus) are proposed. Intricate fragmentation patterns were observed in the MS/MS spectrum of the D5+ complex. The complicated nature of the MS/MS spectrum is attributable to the coexistence of two D5+ configurations, (M1++M4+) and (M2+M3+), in the Aβ16 solution.

Isomerization and Dissociation of the Acrylonitrile Radical Cation: A Theoretical Study

  • Jung, Sun-Hwa;Lee, Gee-Hyung;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3873-3879
    • /
    • 2011
  • The potential energy surface (PES) for the isomerizations and dissociations of the acrylonitrile radical cation was determined from the CBS-QB3 and CBS-APNO calculations. The Rice-Ramsperger-Kassel-Marcus model calculations were performed based on the PES in order to predict the competitions among the dissociation channels. The mechanisms for the loss of $H^{\bullet}$, $H_2$, $CN^{\bullet}$, HCN, and HNC were proposed. The $C_3H_2N^+$ ion formed by loss of $H^{\bullet}$ was predicted as a mixture of $CH{\equiv}C-C=NH^+$, $CH{\equiv}C-N{\equiv}CH^+$, and $CH_2=C-C{\equiv}N^+$. Furthermore $CH{\equiv}C-C{\equiv}N^{+{\bullet}}$ was formed mainly by a consecutive 1,2-H shift and 1,2-H2 elimination.

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • Jo, Sang Jun;Park, Dong Ho;Heo, Do Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

The Effects of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (1) Dissociation Constants of Some Substituted Pyridines in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향. (1) 수용액중에서 몇가지 치환피리딘류의 해리상수)

  • Jung-Ui Hwang;Jong-Jae Chung;Jong-Eon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.145-151
    • /
    • 1986
  • Using a new conductometric method, dissociation constants of 3-cyano, 4-cyano, 3-amino and 4-aminopyridine were measured in the temperature range 15 ∼ 40${\circ}C$ and pressure up to 2500bar in aqueous media. This method is convenient to apply to the low dissociative acid and base but have to do tedious extrapolating procedure for the ionic conductance in elaborated temperatures and pressures and have to know any reference dissociation constant. The measured dissociation constants were increased as the temperature increase but decreased as the pressure increase. From the constants, various thermodynamic properties were evaluated and discussed for the dissociation reactions.

  • PDF

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon;Kang, Hae-Jin;Kim, Su-Jin;Park, Sung-Bae;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1682-1688
    • /
    • 2005
  • Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.