Browse > Article
http://dx.doi.org/10.5478/MSL.2022.13.4.177

Analysis of Amyloid Beta 1-16 (Aβ16) Monomer and Dimer Using Electrospray Ionization Mass Spectrometry with Collision-Induced Dissociation  

Kim, Kyoung Min (Department of Chemistry and Bioscience, Kumoh National Institute of Technology)
Kim, Ho-Tae (Department of Chemistry and Bioscience, Kumoh National Institute of Technology)
Publication Information
Mass Spectrometry Letters / v.13, no.4, 2022 , pp. 177-183 More about this Journal
Abstract
The monomer and dimer structures of the amyloid fragment Aβ(1-16) sequence formed in H2O were investigated using electrospray ionization mass spectrometry (MS) and tandem MS (MS/MS). Aβ16 monomers and dimers were indicated by signals representing multiple proton adduct forms, [monomer+zH]n+ (=Mz+, z = charge state) and [dimer+zH]z+ (=Dz+), in the MS spectrum. Fragment ions of monomers and dimers were observed using collision-induced dissociation MS/MS. Peptide bond dissociation was mostly observed in the D1-D7 and V11-K16 regions of the MS/MS spectra for the monomer (or dimer), regardless of the monomer (or dimer) charge state. Both covalent and non-covalent bond dissociation processes were indicated by the MS/MS results for the dimers. During the non-covalent bond dissociation process, the D3+ dimer complex was separated into two components: the M1+ and M2+ subunits. During the covalent bond dissociation of the D3+ dimer complex, the b and y fragment ions attached to the monomer, (M+b10-15)z+ and (M+y9-15)z+, were thought to originate from the dissociation of the M2+ monomer component of the (M1++M2+) complex. Two different D3+ complex geometries exist; two distinguished interaction geometries resulting from interactions between the M1+ monomer and two different regions of M2+ (the N-terminus and C-terminus) are proposed. Intricate fragmentation patterns were observed in the MS/MS spectrum of the D5+ complex. The complicated nature of the MS/MS spectrum is attributable to the coexistence of two D5+ configurations, (M1++M4+) and (M2+M3+), in the Aβ16 solution.
Keywords
$A{\beta}16$; $A{\beta}16$ dimer; collision-induced dissociation; mass spectrometry; MS/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shankar, G. M.; Walsh, D. M. Mol. Neurodegener. 2009, 4, 48. DOI:10.1186/1750-1326-4-48   DOI
2 Kirkitadze, M. D.; Bitan, G.; Teplow, D. B. J. Neurosci. Res. 2002, 69, 567. DOI: 10.1002/jnr.10328   DOI
3 Kirkitadze, M. D.; Condron, M. M.; Teplow, D. B. J. Mol. Biol. 2001, 312, 1103. DOI: 10.1006/jmbi.2001.4970   DOI
4 Petkova, A. T.; Yau, W.-M.; Tycko, R. Biochemistry 2006, 45, 498. DOI: 10.1021/bi051952q   DOI
5 Paravastu, A. K.; Leapman, R. D.; Yau, W.-M.; Tycko, R. Proc. Natl. Acad. Sci. 2008, 105, 18349. DOI: 10.1073/pnas.0806270105   DOI
6 Zhang, T.; Zhang, J.; Derreumaux, P.; Mu, Y. J. Phys. Chem. B 2013, 117, 3993. DOI: 10.1021/jp312573y   DOI
7 Zou, Y.; Qian, Z.; Chen, Y.; Qian H.; Wei, G.; Zhang, Q. ACS Chem. Neurosci. 2019, 10, 1585. DOI: 10.1021/acschemneuro.8b00537   DOI
8 Reinke, A. A., Ung, P. M., Quintero, J. J., Carlson, H. A. & Gestwicki, J. E. J. Am. Chem. Soc. 2010, 132, 17655. DOI: 10.1021/ja106291e   DOI
9 Haupt, C.; Leppert, J.; Rcnicke, R.; Meinhardt, J.; Yadav, J. K. Angew. Chem. Int. Ed. Engl. 2012, 51, 1576. DOI: 10.1002/anie.201105638   DOI
10 M. Shabestari, M.; Plug, T.; Motazacker, M. M.; Meeuwenoord, N. J.; Filippov, D. V.; Meijers, J. C. M.; Huber, M. Appl. Magn. Reson. 2013, 44, 1167. DOI: 10.1007/s00723-013-0469-3   DOI
11 Kuhn, A. J.; Abrams, B. S.; Knowlton, S.; Raskatov, J. A. ACS Chem. Neurosci. 2020, 11, 1539. DOI: 10.1021/acschemneuro.0c00160   DOI
12 A. Awasthi, A.; Matsunaga, Y.; Yamada, T. Exp. Neurol. 2005, 196, 282. DOI: 10.1016/j.expneurol.2005.08.001   DOI
13 Y. Matsunaga, Y.; Fujii, A.; Awasthi, A.; Yokotani, J.; Takakura, T.; Yamada, T.; Regul. Pept. 2004, 120, 227. DOI: 10.1016/j.regpep.2004.03.013   DOI
14 Liu, R.; McAllister, C.; Lyubchenko, Y.; Sierks, M.R. J. Neurosci. Res. 2004, 75, 162.   DOI
15 Du, X.T.; Wang, L.; Wang, Y.J.; Andreasen, M.; Zhan, D.W.; Feng, Y.; Li, M.; Zhao, M.; Otzen, D.; Xue, D.; Yang, Y.; Liu, R.T. J. Alzheimer's Dis. 2011, 27, 401. DOI: 10.3233/JAD-2011-110476   DOI
16 Istrate, A. N.; Kozin, S. A.; Zhokhov, S. S.; Mantsyzov, A. B.; Kechko, O. I.; Pastore, A.; Makarov, A. A.; Polshakov, V. I. Scientific Reports 2016, 6, 21734. DOI: 10.1038/srep21734   DOI
17 Zirah, S.; Rebuffat, S.; Kozin, S. A.; Debey, P.; Fournier, F.; Lesage, D.; Tabet, J.-C. Int. J. Mass Spectrom. 2003, 228, 999. DOI: 10.1016/S1387-3806(03)00221-5   DOI
18 Li, J.; Lyu, W.; Rossetti, G.; Konijnenberg, A.; Natalello, A.; Ippoliti, E.; Orozco, M.; Sobott, F.; Grandori, R.; Carloni, P. J. Phys. Chem. Lett. 2017, 8, 1105. DOI: 10.1021/acs.jpclett.7b00127   DOI
19 Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T,; Condron, M. M.; Bitan, G.; Teplow, D. B.; Shea, J.-E.; Ruotolo, B. T.; Robinson, C. V.; Bowers, M. T. Nat. Chem. 2009, 1, 326. DOI: 10.1038/nchem.247   DOI
20 Ma, Q.-F.; Hu, J.; Wu, W.-H.; Liu, H.-D.; Du, J.-T.; Fu, Y.; Wu, Y.-W.; Lei, P.; Zhao, Y.-F.; Li, Y.-M. Biopolymers, 2006, 83, 20. DOI: 10.1002/bip.20523   DOI
21 Sengupta, U.; Nilson, A. N.; Kayed, R. EBioMedicine 2016, 6, 42. http://dx.doi.org/10.1016/j.ebiom.2016.03.035   DOI
22 Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333. DOI: 10.1146/annurev.biochem.75.101304.123901   DOI
23 Selkoe, D. J. Physio.l Rev. 2001, 81, 741. DOI: 10.1152/physrev.2001.81.2.741   DOI
24 Brunden, K. R.; Trojanowski, J. Q.; Lee, V. M.-Y. Nat. Rev. Drug Discov. 2009, 8, 783. DOI: 10.1038/nrd2959.   DOI
25 Klein, W. L.; Stine, W. B.; Teplow, D. B. Neurobiol. Aging 2004, 25, 569. DOI: 10.1016/j.neurobiolaging.2004.02.010   DOI
26 Haass, C.; Selkoe, D. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 101. DOI: 10.1038/nrm2101   DOI
27 Benilova, I.; Karran, E.; De Strooper, B. Nat. Neurosci. 2012, 15, 349. DOI: 10.1038/nn.3028   DOI
28 Pujol-Pina, R.; Vilaprinyo-Pascual, S.; Mazzucato, R.; Arcella, A.; Vilaseca, M.; Orozco, M.; Carulla, N. Scientific Reports 2015, 5, 14809. DOI: 10.1038/srep14809   DOI
29 Ono, K.; Condron, M. M.; Teplow, D. B. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 14745. DOI: 10.1073/pnas.0905127106   DOI
30 Chong, S.-H.; Ham, S. Phys. Chem. Chem. Phys. 2012, 14, 1573. DOI: 10.1039/c2cp23326f   DOI
31 Barz, B.; Liao, Q.; Strodel, B. J. Am. Chem. Soc. 2018, 140, 319. DOI: 10.1021/jacs.7b10343   DOI
32 Ahmed, M.; Davis, J.; Aucoin, D.; Sato, T.; Ahuja, S.; Aimoto, S.; Elliott, J. I.; Van Nostrand, W. E.; Smith, S. O. Nat. Struct. Mol. Biol. 2010, 17, 561. DOI: 10.1038/nsmb.1799   DOI
33 Berhanu, W. M.; Masunov, A. E. J. Mol. Model 2011, 17, 2423. DOI: 10.1007/s00894-010-0912-4   DOI
34 Jiang, D.; Men, L.; Wang, J.; Zhang, Y.; Chickenyen, S.; Wang, Y.; Zhou, F. Biochemistry 2007, 46, 9270. DOI: 10.1021/bi700508n   DOI
35 Castelletto, V.; Ryumin, P.; Cramer, R.; Hamley, I. W.; Taylor, M.; Allsop, D.; Reza, M.; Ruokolainen, J.; Arnold, T.; Hermida-Merino, D.; Garcia, C. I.; Leal, M. C.; Castano, E. Scientific Reports 2017, 7, 43637. DOI: 10.1038/srep43637   DOI
36 Liao, M.Q.; Tzeng, Y.J.; Chang, L.Y.; Huang, H.B.; Lin, T.H.; Chyan, C.L.; Chen, Y.C. FEBS Lett. 2007, 581, 1161. DOI: 10.1016/j.febslet.2007.02.026   DOI
37 Furlan, S.; Hureau, C.; Faller, P.; La Penna, G. J Phys Chem B 2010, 114, 15119. DOI: 10.1021/jp102928h   DOI
38 Das, P.; Chacko, A. R.; Belfort, G. ACS Chem. Neurosci. 2017, 8, 606. DOI: 10.1021/acschemneuro.6b00357   DOI