• Title/Summary/Keyword: $CO_2$ solubility

Search Result 361, Processing Time 0.025 seconds

Effect of Isopropanol on CO2 Absorption by Diethylenetriamine Aqueous Solutions (이소프로판올을 포함한 디에틸렌트리아민 상분리 흡수제의 CO2 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • A drawback in the CO2 capture process using an aqueous amine solution is the high energy requirement for the regeneration process. In order to overcome this disadvantage, this study investigated CO2 capture characteristics using a biphasic absorbent in which isopropanol (IPA) was introduced into an aqueous solution of diethylenetriamine (DETA). When the IPA composition exceeded 20 wt% in 20 wt% DETA aqueous solution, the absorbent phase was liquid-liquid separated into a CO2-rich phase and a CO2-lean phase because of the low solubility of the salt formed by the reaction of CO2 with DETA in isopropanol. When the isopropanol composition in the DETA aqueous solution increased, the phase volume ratio of the CO2-rich phase to the volume of the CO2-lean phase increased; and, accordingly, the CO2 in the CO2-rich phase was more concentrated. The results of absorbing CO2 in a packed tower using 20 wt% DETA + IPA + water absorbent confirmed that both the CO2 absorption capacity and the absorption rate were higher than that of the 20 wt% DETA aqueous solution. When a biphasic absorbent composed of DETA + IPA + water is applied to CO2 capture, it can be expected to concentrate CO2 because of phase separation and thereby reduce regeneration energy owing to volume reduction of the CO2-rich phase.

Thermodynamic Properties of Caffeine in Compressed Gas

  • Kim, Jeong Rim;Gyeong, Jin Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.432-436
    • /
    • 1995
  • The solubility of caffeine in compressed carbon dioxide has been measured to determine its fugacity coefficient between 330 and 410 K up to 500 bar. The result allows the calculation of the thermodynamic excess functions such as the molar excess enthalpy, the molar excess free energy, and the molar excess entropy. The pressure variations of the molar excess functions of caffeine in the caffeine-CO2 mixture were discussed and also compared them with those in the caffeine-NH3 mixture.

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Structural, Magnetic, and Magnetoresistance Properties of Co-evaporated Ag-Co Nano-granular Alloy Films (동시 진공증착한 Ag-Co 미세입상 합금박막의 구조, 자기 및 자기저항 특성)

  • 이수열;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 1995
  • The structure, magnetic properties and magnetoresistance phenorrena of Ag-Co nano-granular alloy films prepared by a thermal co-evaporation were studied. Supersaturated fee Ag-Co solid solution and fee Co clusters coexisted in the as-deposited state. As Co content increases from 20 to 55 at.% Co, the grain size of the Ag matrix decreases from 147 to $67{\AA}$, and the Co solubility in the Ag matrix increases from 2.5 to 6.7%. Ag-Co alloy films having composition below 25 at.% Co showed mainly superparamagnetic behavior and above that composition, they showed both paramagnetic and ferromagnetic l::ehavior in the as-deposited state. The maximum magnetoresistance of 19% at R. T. and 10 kOe was obtained in the as-deposited 30 at.% Co alloy film. Heat treatment did not improve the MR ratio tecause most of the Co was already precipitated in the as-deposited state.

  • PDF

The Characteristics of an Oxidative Dissolution of Simulated Fission Product Oxides in $(NH_4)_2CO_3$ Solution Containing $H_2O_2$ ($H_2O_2$ 함유 $(NH_4)_2CO_3$ 용액에서 모의 FP-산화물의 산화용해 특성)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This study has been carried out to look into the characteristics of an oxidative-dissolution of fission products (FP) co-dissolved with uranium (U) in a $(NH_4)_2CO_3$ carbonate solution. Simulated FP-oxides which contained 12 components have been added to the solution to examine their dissolution characteristics. It is found that $H_2O_2$ is an effective oxidant to minimize the oxidative-dissolution of FP. In the 0.5 M $(NH_4)_2CO_3$-0.5 M $H_2O_2$ solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U, while 98${\pm}$2% for Re and Te, 94${\pm}$2% for Cs, and 29${\pm}$2 % for Mo are dissolved for 2 hours. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10${\sim}$20 minutes) due to their high solubility in the $(NH_4)_2CO_3$ solution regardless of the addition of $H_2O_2$, and independent of the concentrations of $Na_2CO_3$ and $H_2O_2$. However, the dissolution ratio of Mo seems to be slightly increased with time and about 33 % for 4 hours, indicating a very slow dissolution rate and also independent of the $(NH_4)_2CO_3$ concentration. It is found that the most important factor for the oxidative-dissolution of FP is the pH of the solution and an effective dissolution is achieved at a pH between 9${\sim}$10 in order to minimize the dissolution of FP.

  • PDF

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Kim, Jeongsoo;Jo, Seung Hwan;Park, Dae-In;Bhavaraju, Sai;Kang, Sang Ook
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2016
  • The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.

Solubility Improvement of Foodwaste by SeCAH and Potential Inhibitors for Anaerobic Co-Digestion (SeCAH를 이용한 음식물쓰레기 용해도 개선 및 혐기성 병합 소화시 저해 가능 인자)

  • Kim, Mi-Hwa;Kim, Se-Mi;Jeon, Sang-Youn;Nam, Se-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1028-1033
    • /
    • 2008
  • Sequential quick crushing and alkali hydrolysis(SeCAH), as a pretreatment for foodwaste, incorporating mechanical crushing and alkali hydrolysis was proposed and investigated in this study. Focuses were placed on the improvement of biodegradability of foodwaste and the estimation of potential inhibitors for anaerobic digestion. The solubility of the pretreated foodwaste by SeCAH was increased 2.5 times rather than mechanical crushing. Considering solubility improvement and energy consumption, 2,000 rpm of crushing strength and 5$\sim$10 sec of crushing time are recommended. After SeCAH, the fraction of large organic particles(>2.36 mm) of foodwaste was sharply decreased from 88.0% to 29.0%, otherwise the fraction of small particles(<75 $\mu$m) was greatly increased from 10.5% to 40.7%. Ammouinum, potassium and sulfate were estimated as potential inhibitors for anaerobic digestion and their concentrations in pig slurry were 3331.3 mg/L, 4256.5 mg/L and 1017.5 mg/L, respectively.

Characterization of Aqueous Solution Pretreatment for Serpentine Used Carbondioxide Sequestration Material (이산화탄소 포획 원료용 사문석의 수용액 전처리 평가)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.340-347
    • /
    • 2008
  • Dissolution process of serpentine in distilled water was systematically investigated for study on pre-treatment of serpentine which was a candidate material for carbon dioxide sequestration. The metallic ions(Ca, Si, Mg etc.) were dissolved in distilled water at ambient condition and their concentrations were changed with dissolution time. The precise evaluation of dissolution process for serpentine dissolved solvent was performed by ion conductivity and pH measurement. Serpentine dissolution in distilled water was evaluated as a stable pre-treatment process without changes of crystallographic structure and chemical structure changes.

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

A Study on Synthesis of Organic Plant Surfactant and Its Solubilizing Action on Bergamot Oil (유기농 식물성 계면활성제의 합성과 베르가못오일에 대한 가용화력에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1208-1218
    • /
    • 2019
  • The study is on the cosmetic solubilizing power of organic plant surfactants. The blended high purity polyglyceryl-10 oleate and polyglyceryl-10 stearate mixtures were synthesized using organically certified raw materials to develop surfactants having excellent solubilizing power. The mixture is called "Solubil ORG-1300". The appearance of this material is a pale yellowish paste, with a specific odor. The specific gravity was 1.12 and it was high purity that acid value was 0.072±0.1. The HLB value of this natural surfactant was averaged = 15.1 and calculated through the Griffin equation. Mechanically it is explained how organic surfactant are available with fragrance and oils. The solubilizing test was determined by eye evaluation method through the dissolving performance test for the two oils and measured the transmittance at 890 nm using a UV spectrophotometer to measure the transparency. The results showed that the concentration of surfactant needed to make Bergamot oil available requires approximately more 2 times. It was also found that the concentration of surfactant needed to make the tocoperyl acetate available was about 8 times higher. Experiments on the solubility resulting from pH changes showed stabilized usable solubilizing power even in acidic areas of pH=3.5, neutral areas of pH=7.2, and alkaline areas of pH=1.5. Experiments on the solubility according to pH variation showed good solubility stabilized in acidic areas of pH=3.5, neutral areas of pH=7.2, and alkaline areas of pH=11.5. As an application of cosmetics, the company successfully developed a prescription for moisturizing activity based on these results, it is expected that a wide range of applications will be available for skin care, baby lotion, sensitivity or atopic skin cosmetics.