DOI QR코드

DOI QR Code

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Received : 2016.02.29
  • Accepted : 2016.03.12
  • Published : 2016.08.31

Abstract

The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.

Keywords

References

  1. J. Coetzer, Ext. Abstr., 170th Meet. Electrochemical Society, San Diego, CA, USA, Oct 1986. Abstr. No. 762.
  2. R. C. Galloway, Ext. Abstr., 172nd Meet. Electrochemical Society, Honolulu, HI, USA, Oct. 1987 Abstr. No. 159.
  3. Coetzer, J. Power Sources, 18, 377 (1986). https://doi.org/10.1016/0378-7753(86)80093-3
  4. R. C. Galloway, J. Electrochemical Soc., 134, 256 (1987). https://doi.org/10.1149/1.2100421
  5. M. Sudoh and J. Newman, J. Electrochem. Soc., 137, 876 (1990). https://doi.org/10.1149/1.2086571
  6. J. Coetzer, G. D. Wald, and S. W. Orchard, J. Appl. Electrochem., 23, 790 (1993). https://doi.org/10.1007/BF00249951
  7. C.-D. Dustman, J. Power Sources, 127, 85 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.039
  8. S.Caporaili, A. Fossati, and U. Bardi, Corros. Sci. 52, 235 (2010). https://doi.org/10.1016/j.corsci.2009.09.009
  9. L. Barci, U. Bardi, S. Caporali, M. Fantini, and A. Scivani, Prog. Org. Coat., 67, 146 (2010). https://doi.org/10.1016/j.porgcoat.2009.10.017
  10. G. Yue, S. Zhang, Y. Zhu, X. Lu, S.Li, and Z. Li, AlChe. J., 55, 783(2009). https://doi.org/10.1002/aic.11698
  11. S. J. Pan, W. T. Tsai, and I. W. Sun, Electrochem. Solid-State Lett. 13, D69 (2010). https://doi.org/10.1149/1.3447842
  12. D. Pradhan and R. G. Reddy, Electrochim. Acta, 54, 1874 (2009). https://doi.org/10.1016/j.electacta.2008.10.022
  13. S. S. V. Tatiparti, F. Ebrahimi, J. Electrochem. Soc., 155, D363 (2008). https://doi.org/10.1149/1.2885016
  14. L. Zhang, X. Yu, Z. Ge, Y. Dong, and D. Li, Appl. Mech. Mater. 121, 65 (2012).
  15. X. Lu, G. Xia, J. P. Lemmon, and Z. Yang, J. Power Sources, 195, 2431 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.120
  16. J. L. Sudworth, J. Power Sources, 100, 149 (2001). https://doi.org/10.1016/S0378-7753(01)00891-6
  17. J. L. Sudworth, J. Power Sources, 51, 105 (1994). https://doi.org/10.1016/0378-7753(94)01967-3
  18. K. B. Hueso, M. Armand, and T. Rojo, Energy Environ. Sci. 6, 734 (2013). https://doi.org/10.1039/c3ee24086j
  19. G. Li, X. Lu, C. A. Coyle, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, and Z. Yang, J. Power Sources, 220, 193 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.089
  20. M. Hosseinifar and A. Petric, J. Power Sources, 206, 402 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.125
  21. J. Prakash, L. Redey, D. R. Vissers, and J. DcGruson, J. Appl. Electrochem. 30, 1229 (2000). https://doi.org/10.1023/A:1026539607417
  22. J. Prakash, L. Redey, and D. R. Vissers, J. Electrochem. Soc., 147, 502 (2000). https://doi.org/10.1149/1.1393224
  23. B. V. Ratnakumar, S. Surampud, G. Halpert, J. Power Sources, 48, 349 (1994). https://doi.org/10.1016/0378-7753(94)80031-6
  24. G. Li, X. Lu, J. Y. Kim, J. P. Lemmon, and V. L. Sprenkle, J. Mater. Chem., A 1, 14935 (2013). https://doi.org/10.1039/c3ta13644b