• Title/Summary/Keyword: $CO_2$ selectivity

Search Result 487, Processing Time 0.033 seconds

Foliage Contact Herbicidal Activity of Dehydrocostus lactone Derived from Saussurea lappa (목향(Saussurea lappa) 유래 Dehydrocostus lactone의 경엽 접촉 살초 활성)

  • Cho, Kwang-Min;An, Xue-Hua;Chon, Jae-Kwan;Kim, Hyo-Sun;Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2010
  • A foliage contact herbicidal substance was separated from ethyl ether fraction in n-hexane extract of Saussurea lappa roots and identified as dehydrocostus lactone [(3aS,6aR,9aR,9bS)-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[5,4-d]furan-2-one](DHCL). When DHCL at 4,000 ppm was foliage-applied to two grasses and two broadleaf plants, greater than 85% necrotic injury was obtained from large crabgrass, maize and soybean, whereas only about 40% necrotic injury appeared in black nightshade, indicating that DHCL has no gross morphological selectivity, but shows difference in contact response among the plant species tested. Conductivity in incubation medium of the leaf disks treated with DHCL increased as the incubation time continued. Relatively low contact injury in black nightshade as compared with the other three plant species tested was attributed to decrease in absorption of DHCL due to relatively high amount of cuticle. DHCL did not require light in the herbicidal action and there were no inhibitory effects on seed germination and cell elongation. Acetyl-CoA carboxylase activity was inhibited by 30% and 58% at $100\;{\mu}M$ and $1000\;{\mu}M$ DHCL, respectively. These results suggested that the herbicidal action of DHCL was related with inhibition of fatty acid synthesis which in turn caused to weaken cell membrane integrity.

$In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method (졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서)

  • Lee, Yun-Su;Song, Kap-Duk;Choi, Nak-Jin;Joo, Byung-Su;Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • A highly selective, sensitive and reliable ozone sensing $In_2O_3$ thin film was fabricated by a sol-gel method. The fabricated film is operated at a relatively lower temperature than ever developed thin films and saved operating power. $In_2O_3$ films deposited by sol-gel technique has been recently attracted because it is an economical and energy saving method and precisely controlled microstructure. Indium alkoxide precursor was synthesized from the reaction between indium hydroxide and butanol. PVA binder was used to improve adhesion of the films. The $In_2O_3$ thin films were obtained by spin coating from 1 to 5 times followed by drying at $100^{\circ}C$ and calcining at $600^{\circ}C$ for 1h. The film thickness was controlled by the number of coating time. The morphology and the thickness of the $In_2O_3$ films were examined by a SEM and XRD. The $In_2O_3$ thin films show a high sensitive to ozone gas at operating temperature of $250^{\circ}C$. The $In_2O_3$ sensor has very good selectivity to $CH_4$, CO, $C_4H_{10}$ and ethanol.

  • PDF

Effect of Alcohols on the Dry Etching of Sacrificial SiO2 in Supercritical CO2 (초임계 이산화탄소를 이용한 웨이퍼의 건식 식각에서 알콜 첨가제의 효과)

  • Kim, Do-Hoon;Jang, Myoung-Jae;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 2012
  • The dry etching of sacrificial $SiO_2$ was performed in supercritical carbon dioxide. The etching of boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$, and Si-nitride (SiN) was investigated by using a two chamber system with HF/py etchant and alcohol additives. The etch rate of sacrificial $SiO_2$ increased upon the addition of methanol. The etch selectivity of BPSG with respect to SiN was highest with IPA although the highest etch rate was resulted from methanol except BPSG. The etch rate increased with the temperature in HF/py/MeOH system. Especially the increase of the etch rate was much higher for BPSG with an increase in the reaction temperature. The etch residue was not reduced apparently upon the addition of alcohol cosolvents to HF/py. While the etch rate in HF/$H_2O$ was higher than HF/py/alcohol system, the rate decreased with the addition of alcohols to HF/$H_2O$. The cantilever beam structure of high aspect ratios was released by the dry ething in supercritical carbon dioxide without damage.

Experimental Study on Reduction of Nitrogen-Containing Compounds Contained in Crude Methylnaphthalene Oil by Solvent Extraction (II) (용매 추출에 의한 조제 메틸나프탈렌유에 함유된 함질소화합물의 저감에 관한 실험적 연구(II))

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-481
    • /
    • 2022
  • As a part of improving the quality of crude methylnaphthalene (CMNO), this study was experimentally examined the reduction of nitrogen-containing compounds (NC) present in the CMNO by solvent extraction. The CMNO was composed of three kinds of NC [quinolone (QU), iso-quinoline (IQU), indole (IN)], three kinds of bicyclic aromatic compound [BAC; naphthalene (NA), 1-methylnaphthalene (1MNA), 2-methylnaphthalene (2MNA)] and biphenyl (BP) etc., in addition to an aqueous formamide solution, which were used as raw materials and a solvent, respectively. The increase in the volume fraction of water to the solvent in the initial state (yw,0) caused a sharp decrease in the distribution coefficient and the yield of NC, but conversely raised the increased selectivity of NC based on 2MNA. The compositions of QU, IQU and IN in the raffinate oil recovered through the equilibrium extraction of batch co-current 5-stage under constant conditions [yw,0 = 0.1, volume fraction of solvent to feed (CMNO) at the initial state = 1, operating temperature = 303 K, liquid-liquid contacting time = 72 h] were reduced by about 51.5%, 55.2%, and 71.8%, respectively, when compared to those of CMNO. From the excellent reduction rate of NC, the formamide extraction method suggested in this study can be expected to be a useful reduction method for NC contained in the CMNO.

Study on the Gas Permeation Behaviors of Surface Fluorinated Polysulfone Membranes (표면불소화 폴리설폰 막의 기체 투과거동에 관한 연구)

  • Kim, Dae-Hoon;Im, Hyeon-Soo;Kim, Min-Sung;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Kim, Beom-Sik;Park, You-In;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.537-543
    • /
    • 2009
  • The direct fluorination of polymers is a heterogeneous reaction using the mixture of $F_2$ and inert gas. In general, the resulting fluorinated polymers have good barrier property chemical stability similar to those of the fluoro-polymers, and could be prepared from the simple process. In this study, the polysulfone dense films were surface fluorinated using the direct fluorination technique and gas permeability and selectivity of the prepared membranes were measured with varying both $F_2$ concentration and reaction time. The introduction of $F_2$ was confirmed by X-ray photoelectron spectroscopy (XPS), water contact angles, and atomic force microscopy (AFM). As the $F_2$ increased, the permeability decreased while the selectivities for $O_2$, $CO_2$, and He gases relative to $N_2$ increased.

Study on Performance of Water Vapor-Permeation Through Hydrophilic Polymer Membranes (친수성 고분자 막을 이용한 수증기 투과 성능에 관한 연구)

  • Rhim Ji-Won;Yun Tae-Il;Seo Moo-Young;Cho Hyun-Il;Ha Seong-Yong
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2006
  • In this study the membrane preparation and water vapor permeation of the hydrophilic polymer materials, polyaminosiloxane and polyhydroxylsiloxane, used as the coating materials for the preparation of asymmetric flat and hollow fiber membranes were investigated. And the water vapor permeation towards air permeation and their permselectivity were intensively studied for the resulting Resin A/Resin C (coupling agent) and Resin B/Resin C membranes. The water vapor permeability for 3 wt% Resin C introduced into Resin A (Resin A/Resin C) membrane was higher than for 1 and 5 wt% membranes and also water vapor permeability increased with increasing operating temperatures. In addition, at this content of 3 wt% Resin C, the absorption capability became maximum through dynamic equilibrium absorption experiment. Water vapor permeability, 43578 Barrer (1 Barrer = $10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$) and 53000 Barrer, and the selectivity of $P(H_2O)P(Air)$, 101.3 and 102.6 were shown at 25 and $35^{\circ}C$, respectively.

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

Effect of Ozone on Gas Separation Membranes for On-Board Inert Gas Generation System (OBIGGS) (OBIGGS용 기체 분리막에서 오존이 미치는 영향)

  • Jung, Kyung Nam;Woo, Seung Moon;Kim, Se Jong;Kim, Ji Hyeon;Han, Sang Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.406-413
    • /
    • 2018
  • In OBIGGS, a small amount of ozone in the atmosphere damages the polymer membrane. Therefore, the ozone removal device is installed at the front end to prevent the damage of the membrane by reducing the concentration of ozone in the gas delivered to the membrane. In this study, two hollow fiber membranes, PI and PSf, used to fabrication hollow fiber module with an effective membrane area of $6.37cm^2$ for gas separation in OBIGGS. The ozone concentration in the chamber was maintained at 2-3 ppm. The gas was continuously supplied into the module by using a pump. The gas permeation characteristics and the tensile strength were evaluated as a function of ozone exposure time. The PI-based hollow fiber membrane showed only 20% reduction in the transmittance, and remained its original uniformity without any significant changes. However, when PSf type hollow fiber membranes were used, the permeability decreased by more than 80% and the tensile strength decreased by more than 70%.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF