DOI QR코드

DOI QR Code

OBIGGS용 기체 분리막에서 오존이 미치는 영향

Effect of Ozone on Gas Separation Membranes for On-Board Inert Gas Generation System (OBIGGS)

  • 정경남 (경상대학교 생산기술공학과) ;
  • 우승문 (경상대학교 나노신소재융합공학과) ;
  • 김세종 (경상대학교 나노신소재융합공학과) ;
  • 김지현 (경상대학교 나노신소재융합공학과) ;
  • 한상훈 ((주)에어레인) ;
  • 남상용 (경상대학교 생산기술공학과)
  • Jung, Kyung Nam (Department of Production Technology, Gyeongsang National University) ;
  • Woo, Seung Moon (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Se Jong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Ji Hyeon (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Han, Sang Hoon (Airrane Co. Ltd) ;
  • Nam, Sang Yong (Department of Production Technology, Gyeongsang National University)
  • 투고 : 2018.12.20
  • 심사 : 2018.12.27
  • 발행 : 2018.12.31

초록

OBIGGS에서는 대기 중의 미량의 오존이 고분자 분리막의 손상을 가져오기 때문에 전단에 오존 제거장치를 설치하여 분리막에 전해지는 기체에서 오존의 농도를 감소시켜 분리막의 손상을 막고 있다. 본 연구에서는 OBIGGS용 기체 분리막을 이용하여 오존 노출시간에 따른 인장강도와 기체투과특성을 평가하여 오존 노출환경과 투과특성의 관계를 확인하였다. 폴리이미드계와 폴리설폰계 두 종류의 중공사 분리막을 이용하였고, $6.37cm^2$의 유효 막 면적을 가지는 중공사 모듈을 제조하여 사용하였다. 오존 챔버를 이용하여 오존의 농도를 2-3 ppm으로 유지하였으며, 챔버 내의 기체를 펌프를 이용하여 모듈내로 지속적으로 공급하였으며, 오존 노출시간에 따라서 기체투과특성과 인장강도를 각각 평가하였다. 그 결과 폴리이미드계 중공사 분리막은 투과도에서 20%의 감소만 나타났을 뿐, 선택도와 인장강도에서 다른 큰 변화를 나타내지 않고 균일하게 유지되는 것을 확인하였다. 하지만 폴리설폰계 중공사 분리막을 사용하였을 때는 투과도가 80% 이상 감소하였고, 인장강도는 70% 이상 감소하는 결과를 나타내었다.

In OBIGGS, a small amount of ozone in the atmosphere damages the polymer membrane. Therefore, the ozone removal device is installed at the front end to prevent the damage of the membrane by reducing the concentration of ozone in the gas delivered to the membrane. In this study, two hollow fiber membranes, PI and PSf, used to fabrication hollow fiber module with an effective membrane area of $6.37cm^2$ for gas separation in OBIGGS. The ozone concentration in the chamber was maintained at 2-3 ppm. The gas was continuously supplied into the module by using a pump. The gas permeation characteristics and the tensile strength were evaluated as a function of ozone exposure time. The PI-based hollow fiber membrane showed only 20% reduction in the transmittance, and remained its original uniformity without any significant changes. However, when PSf type hollow fiber membranes were used, the permeability decreased by more than 80% and the tensile strength decreased by more than 70%.

키워드

참고문헌

  1. J. R. Li, Y. Ma, M. C. McCarthy, J. Sculleya, J. Yub, H. K. Jeong, P. B. Balbuena, and H. C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", J. Membr. Sci., 325, 1 (2008). https://doi.org/10.1016/j.memsci.2008.07.029
  2. C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  3. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223
  4. http://en.wikipedia.org/wiki/TWA_Flight_8000, December 13 (2018).
  5. https://shop.pall.com/us/en/aerospace/military-fixed-wing/ ftis-protection-and-enhancement/obiggs-filter-zidgri78lh8, December 13 (2018).
  6. T. J. Howell, "BOEING MILITARY AIRPLANE COMPANY", pp. 39-43, Aero propulsion laboratory (1987).
  7. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
  8. D. Y. Oh, S. Y. Ha, J. M Lee, H. J. Kim, and S. Y. Nam., "Development trend of gas separation membrane for OBIGGS." KIC News., 14, 27 (2011).
  9. F. R. A. Santos, C. P. Borges, and F. V. Fonseca, "Polymeric materials for membrane contactor devices applied to water treatment by ozonation", Materials Research, 18, 1015 (2015). https://doi.org/10.1590/1516-1439.016715
  10. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and properties of hollow fiber membrane for gas separation using CTA", Membr. J., 21, 98 (2010).
  11. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999). https://doi.org/10.1016/S0032-3861(98)00675-2
  12. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and properties of chlorine-resistance loose reverse osmosis hollow-fiber membrane", Membr. J., 20, 304 (2010).
  13. J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  14. E. H. Kim, C. Y. Park, and J. H. Kim, "Gas transport properties of soluble polyimides containing alicyclic dianhydride", Membr. J., 24, 100 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.100
  15. S. Xiao, X. Feng, and R. Y. M. Huang, "Correlation synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: Correlation of separation properties with diamine monomers" Polymer Engineering & Science, 48, 795 (2008). https://doi.org/10.1002/pen.21007
  16. D. E. Smith, R. Sega, P. Yong, E. Chong, and R. France, "Fuel tank inerting system for civil aircraft", Colorade state university, fall (2014).
  17. H. J. Lee, M. W. Lee, H. Y. Lee, and S. H. Lee, "Separation and recovery of $SF_6$ gas from $N_2$/$SF_6$ gas mixtures by using a polymer hollow fiber membranes", J. Korean Soc. Environ. Eng., 33, 47 (2011). https://doi.org/10.4491/KSEE.2011.33.1.047
  18. L. A. Obvintseva, M. P. Dmitrieva, A. I. Klimuk, A. D. Shepelev, N. V. Kozlova, N. V. Sadovskaya, Yu. A. Tomashpol'skii, and A. K. Avetisov, "Action of ozone on polysulfone-based microfibrous filters", Russ. J. Appl. Chem., 83, 1069 (2010). https://doi.org/10.1134/S1070427210060273
  19. L. A. Obvintseva, K. V. Zhernikov, I. P. Sukhareva, A. D. Shepelev, M. P. Dmitrieva, A. I. Klimuk, and A. K. Avetisov, "Interaction of ozone in low concentrations with microfibrous polymeric filters", Russ. J. Appl. Chem., 83, 1545 (2010).