• Title/Summary/Keyword: $CO_2$ remote sensing

Search Result 133, Processing Time 0.028 seconds

Rock Type Classification by Multi-band TIR of ASTER

  • Watanabe, Hiroshi;Matsuo, Kazuaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1445-1456
    • /
    • 2003
  • The ASTER TIR (thermal infrared radiometer) sensor has 5 spectral bands over 8 to 12 ${\mu}$m region. Rock type classification using the ASTER TIR nighttime data was performed in the Erta Ale range of the Ethiopian Rift Valley. Erta Ale range is the most important axial volcanic chain of the Afar region. The petrographic diversity of lava erupted in this area is very important, ranging from magnesian transitional basalt to rhyolites. We tried to classify the rock types based on the spectral behavior of each volcanic rock types in thermal infrared range and estimated SiO$_{2}$ content with emission data by the ASTER TIR.

  • PDF

A Simplified Strategy for the Epipolar Geometry of Linear Pushbroom Imagery (선형 Pushbroom 영상의 에피폴라 기하모델 수립을 위한 간소화된 방법론)

  • 이해연;박원규
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.97-105
    • /
    • 2002
  • In this paper, we proposed a simplified strategy for the epipolarity of linear pushbroom imagery. The proposed strategy is verified on "Gupta and Hartly" sensor model and "Orun and Natarajan" sensor model. It is also compared with the precise epipolarity model of each sensor model on SPOT and KOMPSAT imagery. For the quantitative analysis, 20 ground control points are used as independent checking points. Based on the results, the accuracy of the proposed strategy is not different from that of the precise epipolarity model of each sensor model (below 0.1 pixels). Under the worst circumstance, the proposed strategy is robust. We can assure that the proposed strategy will show high accuracy on most of sensor models based on the co-linearity equations.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

Investigation of Water Leakage in Seosan A-Region Sea Wall using Integrated Analysis of Remote Sensing, Electrical Resistivity Survey, Electromagnetic Survey, and Borehole Survey (원격탐사, 전기탐사, 전자기탐사 및 시추공영상의 융합적 분석을 통한 서산지역 방조제 누수구역 판별)

  • Hong, Seong-In;Lee, Dongik;Baek, Gwanghyun;Yoo, Youngcheol;Lim, Kookmook;Yu, Jaehyung
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This study introduces integrated approach on detection of a leakage in a sea wall based on remote sensing, electric resistivity survey, electromagnetic survey, and borehole survey for the Seosan A-Region sea wall. The satellite temperature distribution from Landsat ETM+ data identifies water leakage distribution and period by analyzing temperature mixing patterns between sea water and fresh water. Electric resistivity survey provides both horizontal and vertical anomaly distributions over the sea wall showing below average electric resistivity. Electromagnetic survey(electrical conductivity survey) reveals the potential possible leakage areas with minimal background impact by comparing electrical conductivity values between high and low tides. Borehole image processing system confirmed the locations of anomalies identified from the other survey methods and distributions of vertical fracture zones. The integrated approach identified 41.7% of the sea wall being the most probable area vulnerable to water leakage and effectively approximated both horizontal and vertical distribution of water leakage. The integrated analysis of remote sensing, electric resistivity survey, electromagnetic survey and borehole survey is considered to be an optimal method in identifying water leakage distribution, period, and extent of fractures knowledged from the boreholes.

Example of Application of Drone Mapping System based on LiDAR to Highway Construction Site (드론 LiDAR에 기반한 매핑 시스템의 고속도로 건설 현장 적용 사례)

  • Seung-Min Shin;Oh-Soung Kwon;Chang-Woo Ban
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1325-1332
    • /
    • 2023
  • Recently, much research is being conducted based on point cloud data for the growth of innovations such as construction automation in the transportation field and virtual national space. This data is often measured through remote control in terrain that is difficult for humans to access using devices such as UAVs and UGVs. Drones, one of the UAVs, are mainly used to acquire point cloud data, but photogrammetry using a vision camera, which takes a lot of time to create a point cloud map, is difficult to apply in construction sites where the terrain changes periodically and surveying is difficult. In this paper, we developed a point cloud mapping system by adopting non-repetitive scanning LiDAR and attempted to confirm improvements through field application. For accuracy analysis, a point cloud map was created through a 2 minute 40 second flight and about 30 seconds of software post-processing on a terrain measuring 144.5 × 138.8 m. As a result of comparing the actual measured distance for structures with an average of 4 m, an average error of 4.3 cm was recorded, confirming that the performance was within the error range applicable to the field.

2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment (시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석)

  • Hyunsoo Park;Hwiyoung Kim ;Dongki Chung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.621-635
    • /
    • 2023
  • The assessment of structural condition is a crucial process for evaluating its usability and determining the diagnostic cycle. The currently employed manpower-based methods suffer from issues related to safety, efficiency, and objectivity. To address these concerns, research based on deep learning using images is being conducted. However, acquiring structural damage data is challenging, making it difficult to construct a substantial amount of training data, thus limiting the effectiveness of deep learning-based condition assessment. In this study, we propose a foundation model-based 2-step structural damage analysis to overcome the lack of training data in image-based structural condition assessments. We subdivided the elements of structural condition assessment into instantiation and quantification. In the quantification step, we applied a foundation model for image segmentation. Our method demonstrated a 10%-point increase in mean intersection over union compared to conventional image segmentation techniques, with a notable 40%-point improvement in the case of rebar exposure. We anticipate that our proposed approach will enhance performance in domains where acquiring training data is challenging.

Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula (한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교)

  • Lee, Sanghee;Kim, Jhoon;Cho, Hi-Ku;Goo, Tae-Young;Ou, Mi-Lim;Lee, Jong-Ho;Yokota, Tatsuya
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • With the global scale impact of atmospheric $CO_2$ in global warming and climate system, it is necessary to monitor the $CO_2$ concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly $CO_2$ concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric $CO_2$ concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of $CO_2$ over Northeast Asia showed the higher than those of global and the trends also changes with different slope. $CO_2$ products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of $CO_2$ products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

1:5000 Scale DSM Extraction for Non-approach Area from Stereo Strip Satellite Imagery (스테레오 스트립 위성영상을 이용한 비 접근지역의 1:5000 도엽별 DSM 추출 가능성 연구)

  • Rhee, Sooahm;Jung, Sungwoo;Park, Jimin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.949-959
    • /
    • 2020
  • In this paper, as a prior study related to the generation of topographic information using the CAS500-1/2 satellite, we propose a method of extraction DSM for each 1:5000 scaled map in North Korea using KOMPSAT-3A strip images. This technique is designed to set the processing area by receiving shape file, only to generate output for every 1:5000 scaled map. In addition, dense point clouds and the DSM were extracted by applying MDR, a robust stereo image matching technique. Considering that the strip images are input in the units of scenes, we attempted to extract a DSM by processing and merging multiple image pairs in one 1:5000 map area. As a result, it was possible to confirm the generation of an integrated DSM with minimal separation at the junction, and as a result of the accuracy analysis, it was confirmed that the accuracy was within 5m compared to GCP.

Ambient CO2 Measurement Using Raman Lidar (라만 라이다를 이용한 대기 중 이산화탄소 혼합비 측정)

  • Kim, Daewon;Lee, Hanlim;Park, Junsung;Choi, Wonei;Yang, Jiwon;Kang, Hyeongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1187-1195
    • /
    • 2019
  • We, for the first time, developed a Raman lidar system which can remotely detect surface CO2 volume mixing ratio (VMR). The Raman lidar system consists of the Nd: YAG laser of wavelength 355 nm with 80 mJ, an optical receiver, and detectors. Indoor CO2 cell measurements show that the accuracy of the Raman lidar system is calculated to be 99.89%. We carried out the field measurement using our Raman lidar at Pukyong National University over a seven-day period in October 2019. The results show good agreement between CO2 VMRs measured by the Raman lidar (CO2 Raman Lidar) and those measured by in situ instruments (CO2 In situ) which located 300 m and 350 m away from the Raman lidar system. The correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) between CO2 In situ and CO2 Raman Lidar are 0.67, 2.78 ppm, and 3.26 ppm, respectively.

The study of quantitative analysis for noxious gases of plastic materials by remote sensing open path FT-IR spectrometer (원격 측정용 개방 경로형 FT-IR spectrometer를 사용하여 플라스틱 재료의 유해 가스 정량 분석에 관한 연구)

  • Cho, Nam-Wook;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • It is to use many plastic materials as living essential goods. But when the fire is happened, owing to noxious gases, many men should be injured. Therefore as the noxious gases are measured by open path FT-IR spectrometer as remote monitoring, the demage of men could be minimized. Such this system consists of a Fourier transform spectrometer and infrared lamp fitted to long length. The study was to do the quantitative analysis on CO, $NO_2$, HCl, HF gas by remote monitoring open path FT-IR spectrometer. And the method of it should use MLR (multiple linearity regression) method. As result, It was confirmed to be more than 0.95 as $R^2$ of MLR. And then Urethane and PVC of plastic materials selected was burned, the concentration of polluted gases were measured by remote monitoring method.