DOI QR코드

DOI QR Code

Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula

한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교

  • Lee, Sanghee (Department of Atmospheric Science, Yonsei University) ;
  • Kim, Jhoon (Department of Atmospheric Science, Yonsei University) ;
  • Cho, Hi-Ku (Department of Atmospheric Science, Yonsei University) ;
  • Goo, Tae-Young (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Ou, Mi-Lim (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Jong-Ho (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Yokota, Tatsuya (Center for Global Environmental Research, National Institute for Environmental Studies)
  • 이상희 (연세대학교 대기과학과) ;
  • 김준 (연세대학교 대기과학과) ;
  • 조희구 (연세대학교 대기과학과) ;
  • 구태영 (국립기상과학원 지구환경시스템연구과) ;
  • 오미림 (국립기상과학원 지구환경시스템연구과) ;
  • 이종호 (국립기상과학원 지구환경시스템연구과) ;
  • Received : 2015.11.23
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

With the global scale impact of atmospheric $CO_2$ in global warming and climate system, it is necessary to monitor the $CO_2$ concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly $CO_2$ concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric $CO_2$ concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of $CO_2$ over Northeast Asia showed the higher than those of global and the trends also changes with different slope. $CO_2$ products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of $CO_2$ products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

지구 온난화와 기후 시스템에 가장 강력한 영향을 미치는 인자 중 하나인 대기 중 이산화탄소 농도 변화를 지속적으로 모니터링하는 것은 중요하며, 현재 지상 관측과 더불어 위성을 통한 모니터링이 이루어지고 있다. 본 연구에서는 동북아시아 지역 중에서도 1999년부터 주요 대기질 관측소로 운영되어 온 안면도와 고산에서의 대기 중 이산화탄소 농도 변화에 대한 경향성을 전구 월별 평균 값과 비교해 보았으며, 이를 대표적인 온실 기체 관측 위성인 Greenhouse Gases Observing Satellite (GOSAT)과 Atmospheric Infrared Sounder (AIRS)에서 산출되는 값을 안면도와 고산 관측소의 농도 값과 비교하였다. 1999년 1월 대기 중 평균 농도가 371.87 ppm이었던 안면도에서의 이산화탄소 농도는 2013년 12월 405.50 ppm으로 지난 15년간 지속적으로 증가하였다(KMA, 2013). 플라스크 공기 샘플링 방법에 의해 관측된 안면도의 이산화탄소 농도는 같은 기간 전구의 계절 변동성 및 증가 추이가 동일했으나, 동북아시아에서의 이산화탄소 농도의 증가폭이 전구보다 평균 4 ppm 더 높게 나타났다. GOSAT과 AIRS에서 산출된 이산화탄소는 안면도 관측소의 지상 농도와 비교되었으며, 이를 통해 두 위성 자료들의 정확도가 비교하고자 하였다. GOSAT과 AIRS 모두 월별 이산화탄소 농도는 지상 관측소인 안면도의 관측 값보다는 낮은 분포 경향을 보였으나, 계절 변동성과 증가 추이는 동일하게 나타났다. GOSAT과 AIRS에서 산출되는 이산화탄소 농도는 위성별 정확도 분석을 위해 두 위성의 관측 기간 중 동일 관측이 수행된 2011년 1월부터 2012년 12월까지의 자료를 비교하였다. GOSAT은 r이 0.947, RMSD가 5.610, bias가 -5.280으로 r이 0.737, RMSD가 8.574, bias가 -7.316으로 나타난 AIRS보다 동북아시아를 대표하는 안면도 관측소에서의 정확도가 더 높게 나타났다.

Keywords

References

  1. Alexe, M., P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, and C. Frankenberg, 2015. Inverse modelling of CH 4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 15: 113-133. https://doi.org/10.5194/acp-15-113-2015
  2. Baek, H.-J., C. Cho, W.-T. Kwon, S.-K. Kim, J.-Y. Cho, and Y. Kim, 2011. Development Strategy for New Climate Change Scenarios based on RCP. Climate Change Research 2: 55-68. https://doi.org/10.3724/SP.J.1248.2011.00055
  3. Bindoff, N.L., P.A. Stott, K.M. AchutaRao, M.R. Allen, N. Gillett, D. Gutzler, K. Hansingo, G. Hegerl, Y. Hu, S. Jain, I.I. Mokhov, J. Overland, J. Perlwitz, R. Sebbari, and X. Zhang, 2013. Detection and Attribution of Climate Change: from Global to Regional, in: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 867-952.
  4. Chahine, M., L. Chen, P. Dimotakis, X. Jiang, Q. Li, E.T. Olsen, T. Pagano, J. Randerson, and Y.L. Yung, 2008. Satellite remote sounding of midtropospheric $CO_{2}$. Geophysical Research Letters, 35.
  5. Choi, J.H., S.M. Joo, and J.S. Um, 2014. Cross-Correlation Analysis between GOSAT and $CO_{2}$ Concentration Observed by the KGAWC Station. Journal of Korean Society for Geospatial Information System, 22: 11-16. (In Korean with English abstrct). https://doi.org/10.7319/kogsis.2014.22.2.011
  6. Conway, T.J. and P.P. Tans, 1999. Development of the CO2 latitude gradient in recent decades. Global Biogeochem. Cycles, 13, 821-826. https://doi.org/10.1029/1999GB900045
  7. Dlugokencky, E., R. Myers, P. Lang, K. Masarie, A. Crotwell, K. Thoning, B. Hall, J. Elkins, and L. Steele, 2005. Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. Journal of Geophysical Research: Atmospheres (1984-2012), 110(D18).
  8. Griggs, D.J. and M. Noguer, 2002. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather, 57: 267-269. https://doi.org/10.1256/004316502320517344
  9. Houghton, J.T., 1996. Climate change 1995: Thescience of climate change: contribution ofworking group I to the second assessment report of the Intergovernmental Panel on ClimateChange. Cambridge University Press.
  10. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  11. IPCC, A., 2007. Intergovernmental panel on climate change. IPCC Secretariat Geneva.
  12. Jin, F., J. Kim, and K.-R. Kim, 2010. Estimation of Potential Source Region in Northeast Asia through Continuous In-Situ Measurement of Atmospheric $CO_{2}$ at Gosan, Jeju Island, Korea. Terrestrial, Atmospheric and Oceanic sciences, 21(2): 313-323. https://doi.org/10.3319/TAO.2009.03.25.01(A)
  13. Keeling, C.D. and T.P. Whorf, 2005. Atmospheric $CO_{2}$ records from sites in the SIO air sampling network. Trends: a compendium of data on global change: 16-26.
  14. KMA, 2013. Report of Global Atmosphere Watch 2013.
  15. Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied optics, 48: 6716-6733. https://doi.org/10.1364/AO.48.006716
  16. Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M. Kainuma, J. Lamarque, K. Matsumoto, S. Montzka, S. Raper, and K. Riahi, 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 109: 213-241. https://doi.org/10.1007/s10584-011-0156-z
  17. Metz, B., 2001. Climate change 2001: mitigation: contribution of Working Group III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  18. Miao, R., N. Lu, L. Yao, Y. Zhu, J. Wang, and J. Sun, 2013. Multi-year comparison of carbon dioxide from satellite data with ground-based FTS measurements (2003-2011). Remote Sensing, 5: 3431-3456. https://doi.org/10.3390/rs5073431
  19. Olsen, E.T., 2009. AIRS Version 5 Release Tropospheric $CO_{2}$ Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
  20. Shim, C., R. Nassar, and J. Kim, 2011. Comparison of model-simulated atmospheric carbon dioxide with GOSAT retrievals. Asian Journal of Atmospheric Environment, 5: 263-277. https://doi.org/10.5572/ajae.2011.5.4.263
  21. Solar, S.I.M.S., 2014. GAW Report No. 212.
  22. Tsutsumi Y., K. Mori, T. Hirahara, M. Ikegami, and T. J. Conway, 2009. Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases, GAW Report No.184 GAW Report No.184.
  23. Wei, J., A. Savtchenko, B. Vollmer, T. Hearty, A. Albayrak, D. Crisp, and A. Eldering, 2014. Advances in Observations From AIRS and ACOS. Geoscience and Remote Sensing Letters, IEEE, 11: 891-895. https://doi.org/10.1109/LGRS.2013.2281147
  24. Yoshida, Y., N. Kikuchi, I. Morino, O. Uchino, S. Oshchepkov, A. Bril, T. Saeki, N. Schutgens, G. Toon, and D. Wunch, 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Technigues 61: 1533-1547.
  25. Yoshida, Y., Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, 2011. Retrieval algorithm for $CO_{2}$ and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite. Atmospheric Measurement Techniques, 4: 717-734. https://doi.org/10.5194/amt-4-717-2011
  26. Zhang, L., H. Jiang, and X. Zhang, 2015. Comparison analysis of the global carbon dioxide concentration column derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements. International Journal of Remote Sensing, 36: 1406-1423. https://doi.org/10.1080/01431161.2015.1009656

Cited by

  1. 함평만 무안 지역 갯벌의 식생 및 비식생 환경에서 이산화탄소 농도와 플럭스의 계절 변동 vol.21, pp.4, 2015, https://doi.org/10.17663/jwr.2019.21.4.257