Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.2.078

3-Dimensional NiCo2O4 nanostructure prepared by hydrothermal process and its application for glucose sensor  

Jang, Kyu-bong (School of Materials Science and Engineering, Inha University)
Mhin, Sungwook (Department of Advanced Materials Engineering, Kyonggi University)
Abstract
In this study, we prepared NiCo2O4 nanoparticles with large surface area by hydrothermal synthesis. In order to optimize the processing conditions for spinel NiCo2O4 nanoparticles with large surface area, experimental variables including concentration of Ni and Co precursor, reaction time, and temperature for post-heat treatment were evaluated. Optimized conditions for spinel NiCo2O4 with large surface area were [Ni]/[Co] 1:2 ratio, reaction time for 12 h, and post-heat treatment at 400℃. To investigate the feasibility as potential application for glucose sensor, electrochemical tests of the prepared NiCo2O4 nanoparticles in response to glucose was performed, which suggests that the NiCo2O4 can be suitable for a non-enzymatic-based electrochemical glucose sensor based on its high sensitivity and selectivity for glucose detection.
Keywords
$NiCo_2O_4$; Hydrothermal synthesis; Glucose sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Cabo, E. Pellicer, E. Rossinyol, M. Estrader, A. Lopez-Ortega, J. Nogues and M.D. Baro, "Synthesis of compositionally graded nanocast NiO/ NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties", J. Mater. Chem. 20 (2010) 7021.   DOI
2 J. Zhang, Y. Sun, X. Li and J. Xu, "Fabrication of NiCo2O4 nanobelt by a chemical co-precipitation method for non-enzymatic glucose electrochemical sensor application", J. Alloys Compd. 831 (2020) 154796.   DOI
3 K. Kakiuchi, E. Hosono, T. Kimura, H. Imai and S. Fujihara, "Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions", J. Solgel. Sci. Technol. 39 (2016) 63.
4 D. Guragain, C. Zequine, T. Poudel, D. Neupane, R.K. Gupta and S.R. Mishra, "Influence of urea on the synthesis of NiCo2O4 nanostructure: morphological and electrochemical studies", J. Nanosci. Nanotechnol. 20 (2020) 2526.   DOI
5 L. Zhu, Z. Wen, W. Mei, Y. Li and Z. Ye, "Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties", J. Phys. Chem. C. 117 (2013) 20465.   DOI
6 X. Guan, P. Luo, Y. Yu, X. Li and D. Chen, "Solvent-tuned synthesis of mesoporous nickel cobaltite nano-structures and their catalytic properties", Appl. Sci. 9 (2019) 1100.   DOI
7 J. Wang, T. Qiu, X. Chen, Y. Lu and W. Yang, "Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium", Power Sources 268 (2014) 341.   DOI
8 A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.J. Ahn and G. Wang, "A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors", ChemPhysChem 16 (2015) 169.   DOI
9 Y. Zhang, L. Li, H. Su, W. Huang and X. Dong, "Binary metal oxide: advanced energy storage materials in supercapacitors", J. Mater. Chem. A 3 (2015) 43.   DOI
10 X.Y. Yu, X.Z. Yao, T. Luo, Y. Jia, J.H. Liu and X.J. Huang, "Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications", ACS Appl. Mater. Interfaces 6 (2014) 3689.   DOI
11 J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen and T. Wang, "Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors", ACS Appl. Mater. Interfaces 5 (2013) 7405.   DOI
12 K.B. Jang, K.R. Park, K.M. Kim, S.K. Hyun, C. Ahn, J.C. Kim, S.C. Lim, H.S Han and S. Mhin, "Electro-chemical performance of the spinel NiCo2O4 based nanostructure synthesized by chemical bath method for glucose detection", Appl. Surf. Sci. 545 (2021) 148927.   DOI
13 X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, "Hierarchical NiCo2O4 hollow micro-cuboids as bifunctional electrocatalysts for overall water-splitting", Angew. Chem. Int. Ed. 55 (2016) 6290.   DOI
14 J. Yang, M. Cho and Y. Lee, "Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation", Biosens. Bioelectron. 75 (2016) 15.   DOI
15 J. Wang, "Glucose biosensors: 40 years of advances and challenges", Electroanalysis 13 (2013) 983.   DOI
16 W. Huang, Y. Cao, Y. Chen, J. Peng, X. Lai and J. Tu, "Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor", Appl. Surf. Sci. 396 (2017) 804.   DOI
17 K.B. Jang, K.R. Park, K.M. Kim, S.K. Hyun, J.E. Jeon, Y.S. Song, S.K. Park, K.I Moon, C. Ahn, S.C. Lim, J.C. Kim, H.S Han and S. Mhin, "Synthesis of NiCo2O4 nanostructures and their electrochemial properties for glucose detection", Nanomaterials 11 (2021) 55.
18 N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu and S. Komarneni, "Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors", Chem. Eng. J. 345 (2018) 31.   DOI
19 J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu and S. Hussain, "Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors", RSC Adv. 6 (2016) 70077.   DOI