• Title/Summary/Keyword: $CO_2$ emissions reduction

Search Result 426, Processing Time 0.028 seconds

건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로) (A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings))

  • 이종식;강혜진;박진철;이언구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구 (A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space)

  • 박신영;최유영;이민아
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.63-69
    • /
    • 2023
  • '탄소중립 기술적용 시나리오 모형 (CATAS; Carbon-neutrality Assessment based on Technology Application Scenario)'은 공간 단위에서 에너지전환, 수송, 건물 등 분야에 탄소중립 기술을 적용했을 경우 온실가스 감축 효과성 분석을 제공한다. 모형의 개발범위는 온실가스 배출원은 온실가스 직접배출량 대상으로 분석하며, 공간적 범위는 직접·간접배출의 경계를 공간적 범위로 설정하였다. 그리고 기술적 범위는 2050 탄소중립 시나리오에서 온실가스 배출량이 가장 큰 전환부문의 9개 기술과 산림 흡수원을 포함하였다. 탄소중립률 평가 방법론은 ①온실가스 배출현황 분석, ②기술도입에 따른 에너지생산량 예측, ③온실가스 감축량 산정, ④탄소중립률 산정까지 4단계로 이루어져있다. 웹기반 CATAS-BASIC을 개발 한 후 서울시의 「2050 온실가스 감축추진계획」상 제시된 신재생에너지 보급목표를 적용하여 분석을 실시하였다. 태양광·수소연료전지·수열을 적용한 결과, 서울시의 전환부문 배출량인 1.49백만 tCO2eq 중 기술도입으로 0.43백만 tCO2eq 감축하여 전환부문 탄소중립률은 28.94 %로 분석되었다.

The CO2 Reduction Potential Calculation through the Urban Park Construction

  • Lee, Eun Yeob;Kang, Myung Soo;Kim, Jong Kon
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.87-98
    • /
    • 2014
  • This study is to identify quantitatively the function of carbon dioxide emissions reduction due to temperature and energy reduction according to direct carbon dioxide storage, shade provision, and evaportanspiration of urban park. According to the result of study, landscape tree indicated high carbon dioxide storage effect compare to bush, in which broadleaf tree indicated higher storage function than coniferous tree. It is believed to be the storage of carbon dioxide can be increased by increasing the composition rate of forest plants in the urban park. According to the direct estimation result of carbon dioxide storage in terms of example area, storage of carbon dioxide is estimated to be "seoul a zone" $476,818.8kg{\cdot}CO_2/m^2yr$, "anyang b zone" $186,435.7{\cdot}CO_2/m^2yr$, "daejeon c zone" $262,826{\cdot}CO_2/m^2yr$, "kwangju d zone" $231,657.8{\cdot}CO_2/m^2yr$. The carbon dioxide storage per unit area estimated to be "seoul a zone" $3.4{\cdot}CO_2/m^2yr$, "anyang b zone" $5.0{\cdot}CO_2/m^2yr$, "daejeon c zone" $2.6{\cdot}CO_2/m^2yr$, "kwangju d zone" $5.6{\cdot}CO_2/m^2yr$. The result of indirect carbon dioxide reduction effect estimated to be "seoul a zone" $291,603.4{\cdot}CO_2/m^2yr$, "anyang b zone" $165,462.4{\cdot}CO_2/m^2yr$, "daejeon c zone" $141,719.2{\cdot}CO_2/m^2yr$, "kwangju d zone" $154,803.4{\cdot}CO_2/m^2yr$. Carbon dioxide reduction potential amount through the urban park was increased to 1.6 times to 1.8 times when calculated to the indirect effect.

탄소저감형 4성분계 고유동 콘크리트의 배합 및 품질 특성에 관한 실험적연구 (The Experimental Study on Mixing and Quality Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction)

  • 조준희;김용직;오성록;최연왕
    • 한국건설순환자원학회논문집
    • /
    • 제3권3호
    • /
    • pp.268-276
    • /
    • 2015
  • 본 논문에서는 탄소저감을 위한 산업부산물 사용 증대 및 시공성능 향상을 위하여 시멘트 사용량을 80% 이상 감소시킨 탄소저감형 4성분계 고유동 콘크리트를 제조하여 품질특성, 및 탄소저감 성능을 수행하였다. 탄소저감형 4성분계 고유동 콘크리트의 품질특성 평가를 수행한 결과 다량의 산업부산물을 혼합하여 시멘트 사용량을 80% 이상 감소시킨 배합에서 목표 성능을 만족하는 품질을 얻을 수 있었으며, 유동특성, 역학특성 및 내구특성의 경우 기존 기준 배합과 비교하여 다소 성능이 감소되는 경향이 나타났지만 소요 성능 수준 이상의 성능을 만족할 수 있는 것으로 판단된다. 또한, 탄소저감형 다성분계 고유동 콘크리트의 탄소저감 성능을 분석하기 위하여 콘크리트의 전 과정 평가를(LCA) 실시한 결과 기존 기준 배합과 비교하여 약 62.2%의 탄소저감 성능이 있는 것으로 나타났으며, 제조비용의 경우 약 24.5%의 원가 절감이 되는 것으로 나타났다.

한반도 지역에서 CO2 배출량과 OCO-2 XCO2 및 SIF의 관계성 분석 (Analysis of the Relationship between CO2 Emissions, OCO-2 XCO2 and SIF in the Korean Peninsula)

  • 황예지;김재민;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.169-181
    • /
    • 2023
  • 최근 지구온난화의 주원인인 이산화탄소(carbon dioxide, CO2)의 배출량을 줄이기 위하여 한국은 탄소 배출량 감축목표와 탄소 중립을 선언하였으며, 이에 따른 지역별 배출량과 대기 중 CO2 농도의 정확한 평가가 중요해지고 있다. 본 연구에서는 Orbiting Carbon Observatory-2 위성자료와 CO2 배출량 자료를 활용하여 위성기반 대기 중 CO2 농도와 배출량의 시공간적 차이를 확인하고, 이러한 차이를 식생 성장에 따른 광합성 반응지수인 태양유도 엽록소 형광(solar-induced fluorescence, SIF)을 이용하여 설명하고자 하였다. 2014년부터 2018년까지 한국 지역에서 환경부 온실가스종합정보센터(Greenhouse Gas Inventory and Research Center, GIR) 및 Emissions Database for Global Atmospheric Research (EDGAR) 배출량은 지속적으로 증가하였지만, 위성에서 관측된 CO2 농도는 2018년에 전년 대비 감소하는 것으로 나타났다. 지역적으로 살펴보면 경기도, 충청북도는 2018년에 GIR, EDGAR 배출량이 증가하였지만 CO2 농도는 감소하였다. 또한, 배출량과 위성관측 CO2 농도의 상관성분석에서 서울과 강원도 지역에서 각각 0.22 (GIR), 0.16 (EDGAR)으로 낮은 상관성을 보였다. 대기 중 CO2 농도는 SIF와 지역별로 상이한 상관관계를 보였는데, 5~9월의 CO2-SIF 상관성분석에서 서울과 경기지역은 -0.26의 음의 상관계수를, 충청북도와 강원도는 0.46의 양의 상관계수를 보이며 CO2 흡수와 대기 중 농도의 관계성이 지역별로 차이가 있음을 밝혔다. 따라서 대기 중 CO2 농도와 배출량 사이의 관계성을 분석함에 있어 CO2 흡수 과정에 대한 고려가 필요하다는 것을 시사한다.

온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향 (Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction)

  • 정민정;박진규;안덕용;이남훈
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.

경제성장과 산업구조 변화에 따른 장기 온실가스 배출량 전망 시나리오 분석 (An Analysis of Long-Term Scenarios for The GHG Emissions Projections Considering Economic Growth and Industrial Structure Change)

  • 권승문;전의찬
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.257-268
    • /
    • 2016
  • Both economic growth and industrial structure have great influence on energy consumption and GHG emissions. This study analyzed long-term scenarios for GHG emissions projections considering economic growth and industry value added change. In consideration of 3 GDP and 3 industry value added outlook, total 9 scenarios were set; 'Assembly Industry Baseline(AI)', 'Assembly KEIT industry(AK)', 'Assembly Advanced Country industry(AA)', 'KDI Industry Baseline(KI)', 'KDI KEIT industry(KK)', 'KDI Advanced Country industry(KA)', 'OECD Industry Baseline(OI)', 'OECD KEIT industry(OK)', and 'OECD Advanced Country industry(OA)' scenarios. In consideration of the GDP increase rate and industry value added outlook, it is estimated that AI scenario's GHG emissions would be 777 million tons of $CO_2eq$ in 2030. On the other hand, in the case of OA scenario, GHG emissions would be 560.2 million tons of $CO_2eq$ in 2030. Differences between AI scenario's and OA scenario's were 216.8 million tons of $CO_2eq$. It can be identified by that GDP and industry value added change have great influence on GHG emissions. In view of the fact that Korea's amount of GHG emission reduction targets in 2030 were 218.6 million tons of $CO_2eq$ that the result of this research could give us valuable insight.

1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 - (Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation -)

  • 최은정;정현철;김건엽;이선일;이종식
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구 (A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management)

  • 윤현명;장윤;장용철
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성 (Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia)

  • 유경현
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.