• Title/Summary/Keyword: $CO_2$ compressor

Search Result 133, Processing Time 0.022 seconds

Optimum Design of Middle-Sized CO2 Water Heater (중형 이산화탄소 급탕기의 최적 설계)

  • Park, Hanvit;Yun, Rin;Kim, Young Deug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.173-179
    • /
    • 2013
  • Middle-sized $CO_2$ water heater having compressor power of 7.45 kW was designed, and its performances were experimentally tested. Besides, optimum design of the $CO_2$ water heater was conducted by cycle simulation. When ambient temperature of $7^{\circ}C$ and hot water outlet temperature of $80^{\circ}C$ the $CO_2$ water heater showed the COP of 3.2. As hot water temperature increased the COP is getting decreased due to significant increase of compressor power consumption compared to increasing rate of heating capacity. When ambient temperature increased from $-3^{\circ}C$ to $12^{\circ}C$ the COP increased by 30%. The optimum components design of a gas cooler, an internal heat exchanger, and an evaporator were conducted, and the experimental correlation between amount of EEV opening and ambient temperature, and hot water temperature was suggested.

Simulation Study on the Performance Improvement of a $CO_2$ System Applying a Two-stage Phase-separate Cycle (2단압축 상분리 사이클을 적용한 이산화탄소 시스템의 성능향상에 관한 해석적 연구)

  • Ryu Chang-Gi;Lee Ho-Seong;Kim Yong-Chan;Cho Hong-Hyun;Cho Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.641-648
    • /
    • 2006
  • In this study, a two-stage phase-separate cycle was investigated analytically to improve the performance of the $CO_2$ system in the cooling mode. The simulation results were verified with the measured data. The predictions using the simulation model were consistent with the measured data within ${\pm}20%$ deviations. The performance of the modified $CO_2$ system with the two-stage phase-separated cycle was analyzed with the variations of outdoor temperature and EEV opening. The cooling COP decreased with the increase of compressor frequency. The highest COP was 2.7 at compressor frequencies of 30 Hz and 30 Hz for the first and second compressors, respectively. In addition, the cooling COP increased by 9.3% with an application of optimum control of the first and second-stage EEV openings.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Control of Inverter Frequency (인버터 주파수 제어에 따른 CO2용 수냉식 열펌프의 성능 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4721-4726
    • /
    • 2010
  • The performance characteristics of water-chilling heat pump using CO2 for the control of inverter frequency was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter flow type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4m length. The experimental results summarize as the following: for constant inlet temperature of evaporator and gas cooler, as mass flow rate, compression ratio and discharge pressure increases with the inverter frequency. And heating capacity and compressor work increases, but coefficient of performance(COP) decreases with the inverter frequency of compressor. As inlet temperature of secondary fluid in the evaporator increases from $15^{\circ}C$ to $25^{\circ}C$, compression ratio and compressor work decreases, but mass flow rate, heating capacity and COP increases with the inverter frequency of compressor. The above tendency is similar with performance variation with respect to the variation of inverter frequency in the conventional vapor compression refrigeration cycle.

Experimental Study on the Heating Performance of a $CO_2$ Heat Pump Water Heater (이산화탄소 급탕 열펌프의 난방 성능에 관한 실험적 연구)

  • Baek, Chang-Hyun;Lee, Eung-Chan;Kang, Hoon;Kim, Yong-Chan;Cho, Hong-Hyun;Cho, Sung-Wook
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.310-315
    • /
    • 2008
  • In this study, experimental study on the heating performance of a $CO_2$ heat pump water heater with a variation of operating conditions such as refrigerant charge amount, outdoor temperature, compressor frequency, EEV opening and water mass flow rate. Based on the test results, the optimum charge amount was 1800 g. At the water mass flow rates of 75, 85, 95 kg/hr, the water heating temperature was 62, 67, $74^{\circ}C$ and COP was 2.6, 2.8, 3.0, respectively. Besides, the water mass flow rate and compressor frequency were varied to maintain above the water heating temperature of $60^{\circ}C$ with the decrease of outdoor temperature. So, The compressor frequency increased beyond 65 Hz and the water mass flow rate was 45 kg/hr at the outdoor temperature of $-13^{\circ}C$, 65 kg/hr at $-8^{\circ}C$, 75 kg/hr at $-3^{\circ}C$ and 85 kg/hr at 2, $7^{\circ}C$. As the outdoor temperature decreased, the heating COP decreased by 2.5-39.8%.

  • PDF

Applicability of Scroll Expander-compressor for Stirling Engine (스털링 엔진에 대한 스크롤 팽창기 : 압축기의 적용성)

  • Kim, Seong-Jun;Kim, Hyun-Jin;Kim, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2009
  • Conceptual design of scroll expander and scroll compressor for 10kW-class Stirling engine utilizing solar energy as heat source has been carried out to estimate the applicability of scroll mechanism for Stirling cycle. CO2 was chosen as working fluid, since it has lower expansion index and higher density among probably usable gases. Gas temperature at the expander inlet was set at $700^{\circ}C$, and that at the compressor inlet was at $40^{\circ}C$. System efficiency reached maximum at the pressure ratio of about 2.5, and the peak efficiency increased with increasing high side pressure. Due to safety concern, the pressure condition of 6 MPa/2.5 MPa was chosen as design condition. Orbiting scroll members for the expander and compressor were designed to have double-sided structure in order to reduce the overall scroll size and to cancel out the axial gas forces acting on the orbiting scroll base plate. By parametric study on the scroll profile, smaller possible size for the scroll members was obtained. With the shaft speed of 3600rpm, the shaft output of the designed scroll expander was calculated to be 45.4kW, while input power for the scroll compressor was 34.5kW, yielding 10.9kW for the output power of the Stirling engine. System efficiency was estimated to be about 7.3%, and overall efficiencies of the scroll expander and compressor were around 84.1% and 88.3%, respectively.

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

Experimental Study on the Performance of a CO2 Heat Pump Water Heater under Various Operating Conditions (이산화탄소 급탕 열펌프의 운전조건에 따른 성능 특성에 관한 실험적 연구)

  • Sohn, Dong-Jin;Baek, Chang-Hyun;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.273-280
    • /
    • 2011
  • In this study, the steady state performance of a $CO_2$ heat pump water heater was measured with a variation of operating conditions such as refrigerant charge amount, compressor frequency, EEV opening, and water mass flow rate. Transient state performance tests were also conducted to investigate major system effects associated with the interaction between the $CO_2$ heat pump water heater and the water tank. Optimum refrigerant charge amount for the system was 1600 g. At compressor frequencies of 50 Hz and 60 Hz, water mass flow rates of 95 kg/h and 105 kg/h, and EEV opening of 8% and 16%, the water heating temperatures were $65^{\circ}C$ and $68^{\circ}C$ and COPs were 3.0 and 2.8, respectively. In the transient condition, the instantaneous COP decreased with an increase in the inlet water temperature.

Analytical Study on the Heating Performance Improvement of a CO2 Heat Pump Using Vapor Injection (가스인젝션을 적용한 이산화탄소 열펌프의 난방성능 향상에 관한 해석적 연구)

  • Jung, Jongho;Baek, Changhyun;Heo, Jaehyeok;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.767-776
    • /
    • 2012
  • In this study, a simulation model for a $CO_2$ heat pump using vapor injection was developed and validated. It was used to predict the improvement of the heating performance of the $CO_2$ heat pump at various operating conditions. The simulation results showed consistent results with the measured data. The heating performances of the vapor injection and non-injection heat pumps were compared by varying the outdoor temperature and compressor frequency. The heating capacity of the vapor injection heat pump was 40% higher than that of the non-injection heat pump at the outdoor temperature of $-8^{\circ}C$. The performance of the vapor injection heat pump was consistently higher than that of the non-injection heat pump even when the compressor frequency was reduced to 35 Hz at the outdoor temperature of $-3^{\circ}C$.

Design of Back Pressure Control Valve for Automotive Scroll Compressor (차량용 전동식 스크롤 압축기의 배압제어밸브 설계)

  • Nam, Bo-Young;Koo, In-Hwe;Han, Young-Chang;Lee, Geon-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.410-415
    • /
    • 2007
  • The optimization of back pressure chamber is one of the most important factors in designing scroll compressors, because it has a great influence on the efficiencies and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. And the other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that could change back pressure without reassembling compressor. It makes the optimum back pressure be obtained. And then we devised an equipment that the back pressure control valve assembly could be independently tested with. A spring was redesigned to decrease stiffness variation. And sealing mechanism of back pressure control valve was improved to more effective way. As a result it was verified in a real mode test that back pressure variation could be stabilized within 2.3% when discharge pressure and operating frequency varied. And the integrated structure of back pressure control valve is expected to contribute to an effective manufacturing process.

  • PDF

Effects on Performance of an Internal Heat Exchanger According to Charge Amount and Operating Condition in $CO_2$ Cooling Mode (이산화탄소 냉방운전 시 냉매충전량 및 운전조건에 따라 내부열교환기가 성능에 미치는 영향)

  • Kwak, Myoung-Seok;Cho, Hong-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This is an experimental study on the performance characteristics of effective heat pump in the cooling mode using a single-stage compression $CO_2$ cycle with an IHX(internal heat exchanger). The performance of a single-stage compression with IHX was investigated according to charge amount and operating condition. Moreover, the performance characteristic of cooling operating was analyzed with the length of IHX. As a result, the optimum refrigerant charge amount was 2.2 kg. The optimal system COP for compressor frequency of 30, 40, 50, and 60 Hz was 3.493, 3.228, 2.978, and 2.659, respectively. Since the system with IHX can maintain large cooling capacity regardless of operating condition, the system performance doesn't reduce considerably under unfavorable condition. When the compressor frequency was 40 Hz, the COP for a system with IHX length of 3 m and 5 m was 3.361 and 3.51, respectively. By using the IHX into a $CO_2$ cooling system, the performance and reliability improves simultaneously.