• Title/Summary/Keyword: $CO_2$ adsorption isotherms

검색결과 52건 처리시간 0.191초

Preparation of PAN-based Activated Carbon Fibers by Physical Activation (물리적 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 임연수;김기원;정승훈;김기덕;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • 제36권10호
    • /
    • pp.1016-1021
    • /
    • 1999
  • In this study activated carbon fibers were prepared from PAN-based carbon fibers by physical activation with steam or carbon dioxide. The variations in specific surface area amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. in steam activation BET surface area of about 1019 m2/g was obtained after 77% burn-off while carbn dioxide activation produced ACF with 694m2/g of BET surface area after 52% burn-off. However carbon dioxide activation produced at a similar degree of activation higher micropore volume(0.37 cc/g) and amount of iodine adsorption (1589mg/g) than steam activation. Nitrogen adsorption isotherms for (PAN based activated carbon fibers that prepared by physical activation were of type I in the Brunauer-Deming-Deming-Teller classification

  • PDF

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature (Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • 제31권2호
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Role of modified activated carbon by H3PO4 or K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions

  • Manoochehri, Mahboobeh;Khorsand, Ameneh;Hashemi, Elham
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.115-120
    • /
    • 2012
  • Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

The Adsorption and Desorption of Herbicides in Soils (토양내 제초제의 흡착·탈착 특성)

  • Ra, Deog-Gwan;Park, Sang-Sook;Jung, Jae-Sung;Kim, Young-Kyu;O, Tae-Sun
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권6호
    • /
    • pp.1045-1053
    • /
    • 2000
  • The adsorption and desorption of herbicides such as napropamide and pendimethalin was studied in three kinds of soil. sandy loam. silty clay and loam. The results of batch tests performed with various shaking time, pH, organic matter content and temperature in soil were summarized as follows. The shaking times reached to the equilibrium of the adsorption and desorption for napropamide and pendimethalin in soil were 12 and 6 hours. respectively. For each soil. the adsorption rates of napropamide were 23.35%. 31.57% and 25.95%, the desorption rates of them were 18.42%, 13.42% and 15.89%, respectively. And the adsorption rates of pendimethalin were 59.61%, 77.26% and 64.02%, and the desorption rates of them were 3.23%, 2.93% and 3.07%, respectively. The adsorption isotherms with the Freundlich equation showed better consistency than those with the Langmuir one. The adsorption was affected by the organic matter content when it exceed 2.0%. But if the organic matter content is below 2.0%, it was affected by the clay content. When the organic matter content is 0.95~7.45%, the adsorption coefficients ($K_{fa}$) of napropamide and pendimethalin were 1.17~2.50 and 4.74~16.08 and the desorption coefficients($K_{fd}$) of them were 5.33~34.06 and 24.25~134.00, respectively. Because of the physical adsorption between herbicide molecules and soil surface, little effect of pH variation of soils was appeared for the adsorption and desorption. Because of the solubility of herbicide is related to the temperature, the adsorption rate was decreased and the desorption rate was increased with the temperature increase, respectively.

  • PDF

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • 제36권4호
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.

Micropore Analysis and Adsorption Characteristics of Activated Carbon Fibers (활성탄소섬유의 미세기공 분석 및 흡착특성)

  • Moon, Dong-Cheul;Lee, Kwang-Ho;Kim, Chang-Soo;Kim, Do-Hyung;Kim, Mi-Ran;Shin, Chae-Ho;Park, II-Young;Nam, Seoung-Youl;Lee, Chang-Gi
    • Analytical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.89-95
    • /
    • 2000
  • Three grades of activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscose rayon and cotton. The ACFs an exhibited type I isotherms on the adsorption of nitrogen or argon. Micropore analysis revealed that the ACFs have uniform micropore size distribution in which their peak diameters were in the range of $5.6{\pm}0.3{\AA}$. The BET surface area of ACFs up to $1600m^2g^{-1}$ was proportional to the adsorption capacity of iodine. The BET values of the ACFs prepared were proportional to the burn-off degree of the products.

  • PDF

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.

Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN fibers (PAN계 안정화섬유로부터 고기능성 활성탄소섬유의 제조 및 특성)

  • 임연수;유기상;문숙영;정윤중;김명수;함현식
    • Journal of the Korean Ceramic Society
    • /
    • 제40권5호
    • /
    • pp.468-474
    • /
    • 2003
  • Activated carbon fibers were prepared from stabilized PAN fibers by physical and chemical activation to compare their characteristics. In this study, stabilized PAN fibers were activated by physical activation with steam and CO$_2$, and by chemical activation with KOH. The fabricated activated carbon fibers were evaluated and compared such as specific surface area, pore size distribution, pore volume, and amount of iodine adsorption. In the steam activation, a specific surface area of 1635 m$^2$/g was obtained after heat treatment at 990$^{\circ}C$. Otherwise, in the CO$_2$ activation, produced activated carbon fibers had been a specific surface area of 671 m$^2$/g after heat treatment at 990$^{\circ}C$. In chemical activation using KOH, a specific surface area of 3179 m$^2$/g was obtained with a KOH/ stabilized PAN fiber ratio of 1.5 : 1 at 900$^{\circ}C$. Nitrogen adsorption isotherms for fabricated activated carbon fibers showed type I and transformation from type I and II in the Brunauer-Deming-Deming-Teller (B.D.D.T) classification. Increasing specific surface area Increased the amount of iodine adsorption in both activation methods. Because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers.