• Title/Summary/Keyword: $CO_2$ Stripping

Search Result 88, Processing Time 0.021 seconds

Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic

  • Moujanni, Abd-essamad;Qarraey, Imane;Ouatmane, Aaziz
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at $35^{\circ}C$ over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to $32.3gO_2/L$ and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Evaluation of SO2 Absorption Efficiency for Calcined Oyster Shell Slurry Using a Simulated Spray Type-flue Gas Desulfurization (FGD) System: A Comparative Study with Limestone Slurry (모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구)

  • Kim, Seok-Hwi;Hong, Bum-Uh;Lee, Jin-Won;Cha, Wang-Seok;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • About 300,000 tones of oyster shell are annually produced in Korea and, thus, a massive recycling plan is required. Many desulfurizing studies using oyster shells with chemical composition of $CaCO_3$ have been performed so far; however, most of them have focused on dry desulfurization. This study investigates the possibility of using oyster shells for wet desulfurization after calcination. For this, a simulated wet desulfurization facility of spray type was devised and compared the SOx-stripping characteristics of calcined oyster shell with those of limestone. The calcined oyster shell slurry indicate a better desulfurizability than the slurries of raw shell or limestone because the oyster shell transformed to a more reactive phase ($Ca(OH)_2$) by the calcination and hydration. Because of this reason, when the calcined oyster shell slurries were used, the reaction residue showed the higher gypsum ($CaSO_4{\cdot}2H_2O$) contents than any other cases. In the continuous desulfurization experiments, calcined oyster shell slurry showed a wider pH variation than limestone or raw oyster shell slurries, another clear indication of high reactivity of calcined oyster shells for $SO_2$ absorption. Our study also shows that the efficiency of wet desulfurization can be improved by the use of calcined oyster shells.

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem;Kassem, Amany T.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.327-334
    • /
    • 2018
  • The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping (반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구)

  • An, Ju-Suk;Lim, Ji-Hye;Back, Ye-Ji;Chung, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.583-590
    • /
    • 2011
  • The effect of the physical parameters in the reactor (aeration depth, bubble size, and surface area) and the alkalinity of the solution on the ammonia stripping by bubbling were evaluated. When an airflow of 30 L/min was bubbled below the solution surface in the range 6-53 cm, the ammonia removal rate were observed to be the same regardless of the bubbling depths. At pH 10.0 and a temperature of $30^{\circ}C$, the average rate constant and the standard deviation were $0.178h^{-1}$ and 0.004. No appreciable changes in the ammonia removal rate were also observed with varying the bubble size and the air-contacting surface area. Alkalinity of the solution was found to affect the ammonia removal rate indirectly. This is expected because the pH of the solution would vary with dissolution of gaseous $CO_2$ by air bubbling. The real wastewaters from landfill site and domestic wastewater treatment plant were tested. In the case of domestic wastewater (pH = 7.1, alkalinity = 75 mg/L), the ammonia removal rate was poor even with the control of pH to 9.3. The raw landfill leachate (pH = 8.0, alkalinity = 6,525 mg/L), however, showed the appreciable removal rate with increasing pH during aeration. When the initial pH of the leachate was adjusted 9.4, the removal rate was significantly increased without changing the pH during aeration.

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

Determination of Iron in Seawater by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 해수중 미량 철의 정량)

  • Czae, Myung-Zoon;Kim, Kyung;Kwon, Young-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.186-190
    • /
    • 1995
  • A simple procedure, readily available at low cost with a sensitivity sufficient to determine trace levels of iron in seawater is proposed, which utilizes adsorptive accumulation of the iron/catechol complex on the mercury drop electrode in a borate medium of pH 8.0. Optimal conditions include a solution concentration of 2 mM catechol, 2.5 mM borate and a pH of 8.0, an accumulation potential of - 0.25 V is applied for 1∼3 min, and the potential scan is in the differential pulse mode. The limit of detection is 1.5 nM Fe using a preconcentration time of 3 min. The interference from copper can be eliminated and baseline slope is greatly improved, because its peak is well separated from that of iron in the proposed medium.

  • PDF

A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries (폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선)

  • Nguyen, Thi Thu Huong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys containing Co, Cu, Fe, Mn, Ni, and Si. A process to separate metal ions from the sulfuric acid leaching solution of these metallic alloys has been reported. In this process, ionic liquids are employed to separate Fe(III) and Cu(II). In this study, D2EHPA and Cyanex 301 were employed to replace these ionic liquids. Fe(III) and Cu(II) from the sulfate solution were sequentially extracted using 0.5 M D2EHPA with three stages of cross-current and 0.3 M Cyanex 301. The stripping of Fe(III) and Cu(II) from the loaded phases was performed using 50% (v/v) and 60% (v/v) aqua regia solutions, respectively. The mass balance results from this process indicated that the recovery and purity percentages of the metals were greater than 99%.