Ji Sun Lee;Jaesung Chun;Okkyoung Choi;Byoung-In Sang
Journal of Ceramic Processing Research
/
제21권5호
/
pp.602-608
/
2020
Bioelectromethanation was tested using an isolated strain, Methanothermobacter sp., for biogas upgrading. The investigated method showed faster bioelectrochemical conversion of carbon dioxide to methane with higher coulombic efficiency than previously reported without additional hydrogen and mediator supplementation. Bioelectromethanation can utilize carbon dioxide, unlike gas separation methods, and actually requires a less negative potential than in water electrolysis. The isolated methanogens showed a relatively fast conversion to methane compared to the previously reported methane production rate and current intensity. Through further research on electroactive methanogens and the development of operation technology, bioelectromethanation can be applied for biogas upgrading with a lower energy requirement but without CO2 emissions.
전 세계적으로 재생에너지의 비율이 증가함에 따라, 재생에너지로부터 생산되는 불연속적이고 간헐적인 에너지 저장 문제가 주목을 받고 있다. 다양한 에너지 저장 시스템(ESS) 중에서 $CO_2$ 메탄화 기술은 타 시스템에 비해 높은 저장 용량과 저장 기간으로 각광 받고 있다. $CO_2$ 메탄화 반응은 발열반응이며, 촉매가 낮은 온도 범위($250-500^{\circ}C$)에서 높은 활성 및 메탄 선택도를 갖는다. 기존의 고정층 방식에 비하여 유동층 반응기는 높은 열전달 특성으로 인해 발열반응에 적합하며, 열전달과 물질 전달이 유리한 장점을 갖고 있다. 본 연구에서는, 촉매 특성 평가를 위해 기포유동층 반응기(Diameter: 0.025 m, Height: 0.35 m)와 $Ni/{\gamma}-Al_2O_3$ (Ni 70% and ${\gamma}-Al_2O_3$ 30%) 촉매를 사용하였다. 반응 조건은 $H_2/CO_2$ mole ratio: 4.0-6.0, 조업온도 $300-420^{\circ}C$, 조업 압력 1-9 bar 및 $U_o/U_{mf}$ 1-5이었다. 생성 가스의 조성은 NDIR를 통해 분석하였으며, $CO_2$ 전환율은 $H_2/CO_2$ ratio, 압력, 온도가 증가함에 따라 높아지는 경향을 보였다. 이에 반해 가스유속이 빨라질수록 $CO_2$ 전환율은 떨어졌다. 최적의 운전 조건은 $H_2/CO_2$ ratio: 5, 조업온도 $400^{\circ}C$, 조업 압력 9 bar 및 $1.4-3U_{mf}$이었으며 이 때 $CO_2$ 전환율은 99.6%로 나타났다. 본 실험 촉매의 경우 장기 운전 시 촉매 성능 저하가 없이 $CO_2$ 전환율이 일정하게 유지하는 것을 확인하였다.
Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.
To satisfy the growing demand for high-performance batteries, diverse novel anode materials with high specific capacities have been developed to replace commercial graphite. Among them, cobalt hydroxides have received considerable attention as promising anode materials for lithium-ion batteries as they exhibit a high reversible capacity owing to the additional reaction of LiOH, followed by conversion reaction. In this study, we introduced graphene in the fabrication of Co(OH)2-based anode materials to further improve electrochemical performance. The resultant Co(OH)2/graphene composite exhibited a larger reversible capacity of ~1090 mAh g-1, compared with ~705 mAh g-1 for bare Co(OH)2. Synchrotron-based analyses were conducted to explore the beneficial effects of graphene on the composite material. The experimental results demonstrate that introducing graphene into Co(OH)2 facilitates both the conversion and reaction of the LiOH phase and provides additional lithium storage sites. In addition to insights into how the electrochemical performance of composite materials can be improved, this study also provides an effective strategy for designing composite materials.
본 연구에서는 Pd-Ni-YSZ 촉매의 형태 및 공급되는 가스 조성에 따른 수증기-이산화탄소 복합개질 반응 특성을 평가하였다. 촉매는 분말 형태와 다공성 디스크 형태로 제조되었으며 주입 가스는 $CH_4/CO_2/H_2O$ ratio를 각각 다르게 하여 공급하였다. 그 결과 분말 형태의 촉매와 비교하여 다공성 디스크 형태 촉매를 사용하였을 때 $CH_4$와 $CO_2$ 전환율이 전반적으로 향상되었으며, 공급가스의 $CH_4/CO_2/H_2O$ ratio를 1 : 0.5 : 0.5로 하였을 때 $H_2/CO$ ratio가 2에 가깝게 조절되었다. 하지만 탄소침적에 의해 반응 시작 6 h 이후 $CH_4$ 전환율이 일부 감소하였으며 압력 강하가 0.1에서 0.8로 증가하였다. 이를 해결하기 위하여 공급되는 가스의 $CH_4/CO_2/H_2O$ ratio를 조절하여 수분 비율을 최적화한 결과, 1 : 0.5 : 1의 비율로 가스를 공급할 경우 탄소 침적 방지를 통한 내구성 확보가 가능하였으며 전환율 역시 비교적 높은 수준으로 유지됨을 확인하였다.
[ $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ ](X=0, 0.1, 0.3, 0.5) perovskites were prepared by coprecipitation method at pH 7 or pH 11 and its catalytic activity of selective CO oxidation was investigated. The characteristics of these catalysts were analyzed by $N_2$ adsorption, X-ray diffraction(XRD), SEM, $O_2$-temperature programmed desorption(TPD). The pH value at a preparation step made effect on particle morphology. The smaller particle was obtained with a condition of pH 7. The better catalytic activity was observed using catalysts prepared at pH 7 than pH 11. The maximum CO conversion of 98% was observed over $La_{0.5}Ce_{0.5}Co_{0.7}Cu_{0.3}O_{3-{\alpha}}$ at $320^{\circ}C$. Below $200^{\circ}C$, the most active catalyst was $La_{0.5}Ce_{0.5}Co_{0.9}Cu_{0.1}O_{3-{\alpha}}$, of which conversion was 92% at $200^{\circ}C$. By the substitution of Cu, the evolution of ${\alpha}$-oxygen was remarkably enhanced regardless of pH value at preparation step according to $O_2$-TPD. Among the different ${\alpha}$-oxygen species, the oxygen species evolved between $400^{\circ}C$ and $500^{\circ}C$, gave the better catalytic performance for selective CO oxidation including $La_{0.5}Ce_{0.5}CoO_3$ in which Cu was absent.
초임계 이산화탄소($S-CO_2$) 사이클은 소형화된 터보기계 및 열교환기를 통해서 작은 공간에서도 높은 열효율로 전력을 생산할 수 있는 잠재력을 가진 것으로 평가되고 있으며, 최근 이에 대한 관심이 증가하고 있다. 원자력 및 태양열(CSP) 분야에서 $S-CO_2$ 사이클에 대한 연구 결과가 다수 소개되어 온 반면, 폐열 분야에 대한 연구 결과는 상대적으로 많지 않다. 본 연구에서는 폐열 회수 응용 분야에 있어서, 예열에 의한 $S-CO_2$ 사이클의 성능 향상 가능성을 살피기 위하여, 재생 $S-CO_2$ 브레이튼 사이클과 예열기를 갖는 재생 $S-CO_2$ 브레이튼 사이클을 모델링하고 시뮬레이션 하였다. 시뮬레이션 결과, 순출력을 극대화시키는 최적 $CO_2$ 분기율이 존재함을 확인하였다. 본 연구의 시뮬레이션 조건 하에서, 예열기에 의한 순출력 향상은 약 16-26%로 계산되었다.
The synthesis of Fischer-Tropsch oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. Our cobalt catalyst was prepared Co/alumina, Co/silica and Co/titania by the incipient wetness impregnation of the nitrates of cobalt with supports. Co-based catalysts was calcined at $400^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has carried out under $450^{\circ}C$, FT reaction of the catalyst has carried out at GHSV of 4,000 under $200^{\circ}C$ and 20atm. From test results, the order of increasing activity for the catalyst was Co/alumina > Co/silica > Co/titania. When the content of Co metal such as 5, 12, 20 and 30wt% was changed, an CO conversion increased as the content of Co metal increased. The activity of catalyst has obtained the best value at 12wt% Co content.
In D-T fusion reaction, $D_2$ (duterium) and $T_2$(tritium) are used as fuel gas. The exhaust gas of nuclear fusion includes hydrogen isotopes $Q_2$ (Q means H, D or T), tritiated components ($CQ_4$ and $Q_2O$), CO, $CO_2$, etc. All of hydrogen isotopes should be recovered before released to the atmosphere. This study focused on the recovery of hydrogen isotopes from $CQ_4$ and $Q_2O$. Two kinds of experiments were conducted to investigate the catalytic reaction characteristics of SMR (Steam Methane Reforming) and WGS (Water Gas Shift) reactions using Pt catalyst. First test was performed to convert $CH_4$ into $H_2$ using 6% $CH_4$, 6% CO/Ar feed gas. In the other test, 100% CO gas was used to convert $H_2O$ into $H_2$ at various reaction conditions (reaction temperature, S/C ratio, GHSV). As a result of the first test, $CH_4$ and CO conversion were 41.6%, 57.8% respectively at $600^{\circ}C$, S/C ratio 3, GHSV $2000hr^{-1}$. And CO conversion was 72% at $400^{\circ}C$, S/C ratio 0.95, GHSV $333hr^{-1}$ in the second test.
Micro-Pulling Down(${\mu}$-PD)법을 이용하여 직경 1 mm, 길이 30∼35 mm의 $Er_2O_3$와 MgO가 첨가된 화학양론조성 $LiNbO_3$단결정을 성장하였다. 성장된 결정의 $Er_2O_3$와 MgO 첨가에 따른 up-conversion 특성의 변화 및 MgO 첨가량이 광손상에 미치는 영향을 관찰하기 위해 투과율을 측정하였다. 또한 $LiNbO_3$ 단결정 내의 결함유무를 광학현미경을 이용하여 관찰하였고, Electron Probe Micro Analysis(EPMA)를 이용하여 결정 내에 $Er_2O_3$와 MgO가 균일하게 분포되어있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.