• Title/Summary/Keyword: $CO_2$ 배출량 산정

Search Result 210, Processing Time 0.036 seconds

Experimental Research for CO2 Emission Estimation of Medium-Scale Excavator Reflecting Work Characteristics (작업 특성을 반영한 중규모 굴삭기의 CO2 배출량산정을 위한 실험적 연구)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.717-727
    • /
    • 2017
  • Researches on the emissions of greenhouse gases in the construction industry, which accounts for 40% of raw materials, 30% of energy consumption, and 30% of $CO_2$ emissions in the entire industry, are mainly focused on studies of LCA. However, it is assessed that $CO_2$ emissions are higher in construction sequence than in operation sequence. Also, it is considered that construction machinery using fossil fuel is a main factor causing environmental load in construction sequence. Therefore, this study analyzes the workload and engine RPM characteristics of the excavator which is the second largest number of registered construction machinery in Korea and the highest utilization rate in actual construction site. The excavator is divided into non-load states and load states where power is transmitted to the excavator. The exhaust gas is analyzed by a direct measurement method using PEMS equipment. $CO_2$ emissions are estimated by analyzing the relationship between RPM and exhaust emission characteristics according to the actual driving conditions. Additionally, we analyze the difference between $CO_2$ emissions of construction machine calculated by this study and $CO_2$ emissions calculated by using carbon emission coefficient.

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

A Study for Developing an Operating Mode-Based Emission Model for Korea (한국형 운행 모드 기반 배출량 산정 모형 개발에 관한 연구)

  • HU, Hyejung;FREY, Christopher;YOON, Chunjoo;YANG, Choongheon;KIM, Jinkook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.180-190
    • /
    • 2016
  • Atmospheric pollutants such as Nitrogen Oxides(NOx), Carbon Monoxide(CO), Carbon Dioxide($CO_2$), Particulate Matter(PM) and Hydrocarbons(HC) come from vehicle exhaust gases. Emission curves based on average travel speeds have been employed for estimating on-road emissions as well as evaluating environmental impacts of transportation plans and policies in Korea. Recently, there is a growing interest in estimation methods of vehicle emissions considering relationship between vehicle dynamic driving characteristics and emissions, and incorporating such emission estimators into traffic simulation models. MOVES Lite, a simplified version of MOVES, is one of the estimation methods. In this study, the authors performed a study to develop an adaptable version of MOVES Lite for Korea, called MOVES Lite-K. Vehicle types, driving characteristics, emission rates, and emission standards of Korea were reflected in MOVES Lite-K. The characteristics of emission calculation of MOVES Lite-K and NIER emission curves were compared and the adaptability of MOVES Lite-K were examined.

A Case Study on the Calculation of Greenhouse Gas Emissions in Research and Development Activities of Geo-Technology in Korea: A Study on the Basic Projects of the Korea Institute of Geoscience and Mineral Resources (지질자원기술분야 연구개발활동 온실가스 배출량 산정 사례연구 - 한국지질자원연구원 기본사업을 대상으로 -)

  • Seong-Yong Kim;Chul-Ho Heo;Il-Hwan Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.147-166
    • /
    • 2023
  • This study aimed to develop and apply guidelines for calculating greenhouse gas emissions to activate the contribution of the Korea Institute of Geoscience and Mineral Resources (KIGAM) for institutional-level research activities. In addition, we intended to improve awareness by identifying greenhouse gas emissions from KIGAM's basic research and development (R&D) activities in fiscal 2022. Herein, the research plan and budget contents of individual projects were analyzed, whilst the boundaries and scopes of greenhouse gas emissions were determined, with 22 cases being derived as either direct, indirect, or other sources of emissions. Subsequently, research activity emissions were calculated by emission source. The greenhouse gas emissions of KIGAM's 2022 basic project R&D activities were 2,041.506 tCO2eq, of which direct emissions were 793.235 tCO2eq (38.86%), indirect emissions comprised 305.647 tCO2eq (14.97%), whilst other emissions were 942.624 tCO2eq (46.18%). In particular, greenhouse gas emissions per 100 million won in the KIGAM's basic projects for fiscal 2022 (a total of 96.661 billion won) was calculated as 2.11 tCO2eq, whilst greenhouse gas emissions per participating researcher (was 4.800 tCO2eq. Such calculations should be carried out annually rather than once and accumulated for at least 5 years. Accordingly, it will be possible to standardize specific matters that influence emissions according to differences in research field characteristics and methods, thus guiding greenhouse gas emission reduction management in the future and evaluating the contributions of Environmental, Social and Governance (ESG) management to the environmental sector.

Comparison of Greenhouse Gas Emission from Construction Equipment by Tier 2 and Tier 3 Methodologies (건설기계의 Tier 2와 Tier 3 방법론에 의한 온실가스 배출량 비교)

  • Shin, Yong Il;Kim, Jeong;Kim, Pil Su;Chung, Chan Kyo;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Recently, the operation of construction equipments have increased by many construction project. So a respectable amount of greenhouse gas is expected from construction equipments. But the greenhouse gas emissions from construction equipment have been high uncertainty due investigation of a lack of activity data and emission factors in Korea. In this study, annual greenhouse gas emissions from construction equipment are estimated by IPCC's Tier 2 and Tier 3 method. These methods require emission factors, fuel consumption, average kilowatts and operating hours. As the results, the nationwide emission from construction equipments by Tier 2 and Tier 3 are calculated as $21,784kton-CO_2eq/year$ and $22,811kton-CO_2eq/year$ in 2008.

Development of Quantitative Analysis Methodology on Environmental Effect through Adaptation of Advanced Safety Vehicle (첨단차량 도입 시를 고려한 환경적 효과의 정량적 분석 방법론 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.94-104
    • /
    • 2010
  • The capacity of highway is restricted and traffic congestion is caused by increasing traffic demand. Also, greenhouse gases are increased by traffic congestion. CDM (Clean Development Mechanism) is an idea of interest to reduce greenhouse gases. However, CDM's cases applied in traffic field are rare. Thus, it is necessary that methodology to reduce greenhouse gas should be developed and applied to CDM. A methodology for identifying greenhouse gas emissions was developed in this paper. This methodology was developed on the basis of baseline methodology registered at UN. Travel time and speed in the conventional traffic condition and in the automated traffic condition are compared by BPR function. The calculated speed applied to emission factor equation and then $CO_2$ emissions was calculated. A simulation was executed to evaluate the validity of the developed methodology. In the result, advanced vehicle's $CO_2$ emissions are more than conventional vehicle's $CO_2$ emissions in the stable flow condition. However, advanced vehicle's $CO_2$ emissions are less than conventional vehicle's $CO_2$ emissions in the unstable flow condition. It is assure that capacity of highway is enhanced and efficiency of highway is improved by adopting advanced safety vehicle in the smart road.

CO2 net atmospheric flux estimation and influence factors analysis in a stratified reservoir (성층화된 저수지에서 CO2 NAF 산정 및 영향 인자 분석)

  • Park, Hyung Seok;Chung, Se Woong;Lee, Eun Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.73-73
    • /
    • 2019
  • 지구 표면의 약 2%에 해당하는 담수에서 육상계 전체가 흡수하는 탄소의 50%가 배출되며, 이는 토양표면에서 배출되는 탄소량에 비해 더 큰 수치로 전 지구적 탄소순환 해석에 중요한 역할을 한다. 특히, 내륙수역과 대기의 경계면에서 $CO_2$ 이동은 전 지구적 탄소순환의 중요한 구성요소로 평가되고 있다. 호수와 저수지 같은 담수 저류시설은 육상에서 기인한 탄소의 운송 및 처리 역할을 한다. 하지만, 저수지에서 온실가스배출량을 평가할 수 있는 명확한 방법론이 부족하며, 전지구 규모 GHGs배출량에 대한 추정에 대한 불확실성이 상당히 큰 상황이다. 본 연구에서는 몬순기후대에 위치한 인공저수지를 대상으로 보다 신뢰도있는 온실가스 배출량 추정을 위해 $CO_2$ NAF 산정하고, 산정에 영향을 미치는 인자들을 분석 하였다. 분석을 위해 $CO_2$ NAF 산정에 필요한 수리 및 수질 인자들을 2017년부터 2018년까지 수집하고, 기초통계량 및 상관분석을 실시하였다. 또한, 주성분분석(PCA) 및 다중선형회귀모델(MLR)과 랜덤포레스트(RF) 기법을 사용해 변수 중요도를 평가하였으며, $CO_2$ NAF 산정 주요인자인 기체교환 계수를 경험적 모델 3종(Cole and Caraco, Crusius, Vachon), 표면갱신형 모델 4종(Heiskanen, Maclntyre, Read, Soloviev)을 비교, 검토하였다. 조사기간 동안 기체교환계수 산정 결과 Crusius 모델 예측값이 평균 $0.342(0.047{\sim}4.323)cm\;hr^{-1}$으로 검토한 모델중 가장 낮은 평균값을 보였으며, Heiskane 모델이 $2.135(0.337{\sim}5.152)cm\;hr^{-1}$으로 가장 큰 평균값을 보였다. 대상 수체는 연주기로 완전혼합되며 수온성층이 약화되는 시기에 저수지 표층 아래에 축적된 탄소가 표층으로 전달되어 높은 수준의 p$CO_2$를 보이며, 수표면에 큰 난류 강도가 작용하는 기간에 대기중으로 배출(pulse emission) 기작이 나타난다. NAF 산정결과 경험적 모델의 NAF값($-1246.0{\sim}6510.3mg-CO_2m^{-2}day^{-1}$)은 표면갱신형 모델 NAF값($-1436.1{\sim}8485.7mg-CO_2m^{-2}day^{-1}$)보다 낮은 수준을 보였으며, 풍속의 함수만을 이용하는 경험적 모델보다 부력 플럭스와 난류 혼합의 영향을 고려하는 Macintyre, Heiskanen모델이 성층 저수지의 $CO_2$ NAF 산정에 적합한 것으로 나타났다. $CO_2$ NAF 산정의 주요인자로 MLR모델은 Tw, EC, pH, Chla, TOC, Alk, RF모델은 EC, DO, TOC가 중요 변수로 평가되었다. PCA 분석결과, 수온이 낮고 성층이 약화되며 pH가 낮은 상태에서 NAF가 큰 것으로 나타났다.

  • PDF

Estimation of the Greenhouse Gas Inventory on Forest Land at Provincial Level (광역지자체의 산림지 온실가스 인벤토리 시범 산정)

  • Kim, Kyeong Nam;Lee, Sun Jeoung;Kim, Raehyun;Son, Yeong Mo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2014
  • This study was conducted to estimate of the greenhouse gas inventory on forest land at provincial level. The greenhouse gas emissions are calculated according to the K-MRV guidance. We collected activity data from statistical yearbook of forestry and used default emission factors. The annual total $CO_2$ emission in forest land was -58,711Gg $CO_2eq.$ and the annual $CO_2$ emission in loss such as fellings, fuelwood and fire was 19,896Gg $CO_2eq.$ in 2011. The results showed the removals of carbon dioxide in the forest land, it's amount was -38,815Gg $CO_2eq.$ in 2011. Annual net $CO_2$ removal of local forest was highest in Kangwon province in 2011. Our study did not use the many statistics due to exclusion of double counting. There are need complementary activity data and emission factors, and then we will find a way to calculate the greenhouse gas emissions/removals in the near future.

A Study on Estimating CO2 Emission of Port in Korea (국내 항만장비의 온실가스 배출량 산정 및 추정 연구)

  • 김보경;박민정;안승현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.110-111
    • /
    • 2023
  • As carbon neutrality has recently emerged as a global issue, the carbon neutral roadmap of MOF has been established and various strategies have been proposed to achieve carbon neutrality in the entire marine industry. The port sector is also included in the target for greenhouse gas reduction, but emissions are not being measured due to limitations in data collection and no inventory construction. For building a carbon-neutral port, it is essential to calculate and forecast emissions and set reduction targets. Accordingly, in this study, CO2 emitted from domestic port equipment was calculated according to the IPCC Guildeline's emission calculation method, and future emission was estimated. As a result of the analysis, about 420,000 tons of CO2 was emitted based on the cargo volume in 2020, and emissions are expected to continue to increase in proportion to the increase and about 720,000 tons will be emitted by 2050. In order to achieve carbon neutrality of the port, it needs to promote emission reduction by converting the power source for oil-based equipment to eco-friendly fuel. Also container and miscellaneous ports which require complicated cargo handling need to effort to reduce CO2.

  • PDF

Calculation and Projection of Methane Emissions from Waste Landfill for GHG Emission Reduction: Case Study of Puerto Cortes Landfill in Honduras (폐기물 매립지의 온실가스 감축을 위한 메탄가스 배출량 평가: 온두라스 Puerto Cortes 매립장 사례 분석)

  • Choong Gon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • The objective of this study was to assess the feasibility of a landfill project aimed at reducing greenhouse gas (GHG) from Puerto Cortes Landfill in Honduras ("Project"). The feasibility study involved surveying the status, composition and amount of waste entering the landfill, and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model and based on the survey results indicated that the period 2027 to 2041 would see a total GHG emission reduction of 506,835 ton-CO2/year, with a mean yearly GHG emission reduction of 33,789 ton-CO2, assuming landfill gas collection is implemented, The findings of the study are expected to serve as basic data for deciding about whether and how to proceed with the Project.