• Title/Summary/Keyword: $CO_2$제거공정

Search Result 361, Processing Time 0.035 seconds

Comparison of Removal Capabilities among Several Aqueous Amine Absorbents for Sweeting Acid Gases Contained in Natural Gas (다양한 아민 흡수제를 이용한 천연가스 중에 포함되어 있는 산성가스 제거 성능 비교)

  • Cho, Du-hee;Kim, Dong-sun;Cho, Jung-ho
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Simulation works for comparing removal capabilities of acid gases contained in natural gas among several aqueous amine absorbents using commercial process simulator PROMAX(BR&E Co.) were carried out. Amine aqueous solution used in this study were 30 wt% MEA, 30 wt% DEA, 50 wt% MDEA, and 50 wt% MDEA with 3 wt% piperazine as additive. We obtained the simulated results that while MEA aqueous solution is relatively capable of more $CO_2$ gas, but DEA, MDEA, MDEA aqueous solutions with piperazine as additive are capable of more $H_2S$ gas. Also, we found that 30 wt% MDA aqueous solution is the smallest circulate rate of lean amine solution, and 50 wt% MDEA aqueous solution with 3 wt% piperazine as additive is the smallest heat duty in stripping unit. 50 wt% MDEA aqueous solution with 3 wt% piperazine as additive is found less amine circulation rate than 50 wt% MDEA due to the introduction of additive.

  • PDF

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process (포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구)

  • Kim, Dong Woo;Heo, Hoon;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.

반도체 및 디스플레이 세정 공정용 $CO_2$ 클러스터 장비의 클러스터 발생 특성 분석

  • Choe, Hu-Mi;Jo, Yu-Jin;Lee, Jong-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.303-303
    • /
    • 2013
  • 표면에 부착된 나노/마이크로 입자는 다양한 분야에서 오염물질로 작용한다. 특히 형상이 미세하고 공정 단계가 복잡한 반도체 및 디스플레이 등의 전자 소자 공정에서 미치는 영향이 크다. 따라서 입자상 오염물질의 제거에 관하여 상용화된 습식 세정 방법이 다양하게 존재하지만 표면 손상, 화학 반응, 부산물, 세정 효율 등 여러 가지 문제점이 있어 새로운 세정 방법이 요구된다. 이에 건식 세정 방법, 그 중에서도 입자의 충돌을 통해 제거하는 방법인 에어로졸 세정, 필렛 세정 등이 개발되었으나 마이크로 크기로 생성되는 입자로 인하여 형상의 손상이 크다. 따라서 본 연구에서는 나노 단위로 기체/고체 혼합물만 생성하여 세정하는 가스 클러스터 세정 방법을 이용하여 이러한 문제점을 해결하고자 하였다. 클러스터 세정 장비를 이용한 표면 처리는 충돌에 의한 제거에 기반한다. 따라서 생성 및 가속되는 클러스터로부터 대상으로 전달되는 운동량의 정도가 세정 특성에 영향을 미치며 이는 생성되는 클러스터의 크기에 종속적이다. 생성 클러스터의 크기 분포는 분사 거리, 유량, 분사 각도, 노즐 냉각 온도 등의 변수에 관한 함수이다. 따라서 본 연구에서는 $CO_2$ 클러스터를 이용한 세정 특성을 정의 및 제어하기 위하여 생성되는 클러스터 특성에 관하여 이론적, 수치 해석적, 실험적 연구를 수행하였다. 먼저, $CO_2$의 물리적 특성 및 이를 이용한 특정 크기 오염 물질을 제거하는데 요구되는 임계 클러스터 크기 계산을 이론적으로 구하였다. 이는 오염물질의 부착력과 클러스터의 운동량 전달에 의한 제거력의 비교를 통해 이루어졌다. 두 번째로 클러스터 크기분포를 수치 해석적으로 예측하기 위하여 각 조건에 대하여 유동해석을 수행하고 이를 통해 구해진 노즐 내 기체의 냉각 속도를 GDE (General Dynamic Equation) 계산에 대입하여 구하였다. 마지막으로 PBMS(Particle Beam Mass Spectrometer)를 이용하여 실험적으로 클러스터 크기분포를 각 조건에 대하여 구할 수 있었다. 또한 크기 분포 경향에 대한 간접적 확인을 위하여 포토레지스트가 코팅된 웨이퍼에 클러스터의 충격으로 생성된 크레이터 크기의 경향을 분석하였다. 이와 같은 방법에 의하여 생성되는 클러스터는 노즐의 유량 증가, 온도 상승에 각각 비례하여 작아지는 것을 확인할 수 있었다.

  • PDF

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater (지하수 오염물질 처리를 위한 Full Scale PUV/US Hybrid System 연구)

  • Han, Jonghun;Park, Wonseok;Lee, Jongyeol;Heo, Jiyong;Her, Namguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.575-580
    • /
    • 2017
  • Chlorinated hydrocarbons (TCE and PCE), petroleum hydrocarbons (BTEX, PAHs, and TPH), and explosive compounds (TNT, RDX, and HMX) have been detected in underground water countrywide. The overall objective of this study is to evaluate sono-catalytic degradation coupled with the use of PUV in order to understand the fate and transport of a representative selection of non-biodegradable contaminants (i.e., TCE, PCE, BTEX, PAHs, TPH, TNT, RDX, and HMX) in groundwater. Both ultraviolet (UV) and ultrasound (US) systems are used in degrading of organic contaminants and they can thus be applicable simultaneously as an UV/US hybrid system in attempts further to increase the degradation efficiency. Results indicate that synergistic effect of UV/US hybrid system is closely correlated to the enhancement of sono-chemical reactivity with the UV-US interaction of increasing the formation rate of OH by providing additional $H_2O_2$ production through the pyrolysis of water molecules during UV/US hybrid irradiation.

Levulinic Acid Production from Lignocellulosic Biomass by co-solvent Pretreatment with NaOH/THF (NaOH/THF 공용매 전처리 목질계 바이오매스로부터 레불린산 생산)

  • Seung Min Lee;Seokjun Han;Jun Seok Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.265-272
    • /
    • 2023
  • Lignocellulosic biomass is essential to pretreatment because of having rigid structures and a lot of lignin. Among methods of pretreatment, using THF solvents has the advantage of being easy to reuse. THF (Tetrahydrofuran) used as a co-solvent with water or ionic solvent that is inexpensive and can remove lignin over a wide range of reaction conditions. NaOH (Sodium hydroxide) has been demonstrated to preferentially solvate lignin from cellulose. Thus, NaOH was used as a pretreatment co-solvent for the fractionation of lignin by destroying the ether bond to amend for hydrolysis and expand the surface area of cellulose and hemicellulose. In this experiment, lignin was removed by the NaOH/THF co-solvent pretreatment process to characteristics for the pretreatment and obtain the optimal levulinic acid conversion yield through the acid catalyst conversion process. the NaOH/THF co-solvent system was conducted in various ratios of co-solvent under a total of 16 conditions. And the temperature was 180 ℃ during to 60 mins. The optimum condition of co-solvent is NaOH 5 wt%/THF 90:10(v/v%), 76.8% glucan content was obtained through this co-solvent pretreatment, and 90.1% lignin was removed. In the acid catalyst conversion process, which is a subsequent pretreatment process, the experiment was conducted under the conditions of 30 to 90 min of reaction time and 160 ℃ to 200 ℃ reaction temperature. The optimum condition of acid catalyst conversion process is 60min reaction time under of 180 ℃, and it obtained 84.7% of levulinic aicd conversion yield.

A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process (DME 생산공정에서 노말 메틸 피로리돈(N-Methyl-2-Pyrrolidone) 용매를 이용한 이산화탄소 제거공정 연구)

  • Jung, Jongtae;Roh, Jaehyun;Cho, Jungho
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, simulation works have been performed for the $CO_2$ removal process contained in the DME production process using NMP (N-methyl-2-pyrrolidone) as a solvent. PRO/II with PROVISION release 9.1 at Invensys was used as a chemical process simulator and NRTL activity coefficient model with Henry's law option and Soave-Redlich-Kwong equation of state were used for thermodynamic models. For the determination of the binary interaction parameters in NRTL model, regression works have been performed to match the experimental thermodynamic data. Optimal feed tray location which minimizes the reboiler heat duty was determined.

Treatment of Highly Concentrated PCB Containing Insulating Oil by Countercurrent Oxidation Process (역류산화공정을 이용한 고농도 PCBs 함유 절연유의 처리)

  • Lee, Chang Soon;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.143-150
    • /
    • 2017
  • Countercurrent oxidation process (COP) was developed and evaluated for treatment of highly concentrated PCB containing insulating oil. The PCB content in insulating oil taken from Haksanmetal company was found to be 1,512 ppm. The COP utilizes a self-sustained flame which propagates itself in a direction counter to the oxygen flow. The flame removes PCBs adsorbed in activated carbon and, at the same time, regenerates activated carbon. The flame temperature was determined from both mass loss of activated carbon and the relative ratio of CO and $CO_2$ exhausted during COP, and showed that its temperature lied in the range of $650-850^{\circ}C$. Removal efficiency of PCBs was achieved above 99.99% for 5% of insulating oil loaded activated carbon with 1 COP in weight ratio. Also, the same removal efficiency was acquired for 60% of insulating oil loaded activated carbon with three consecutive COP. In addition, specific surface area of activated carbon during COP was recovered to almost similar value of virgin activated carbon. It proved that the COP was much effective in removing high concentration of PCBs in insulating oil easily and affordably.

Evaluation of CO2 Removal Efficiency in Liquor plant by scrubber (스크러버를 이용한 주류공정 내 고농도 이산화탄소 제거효율 평가)

  • Park, Il Gun;Park, Yeong Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.986-994
    • /
    • 2017
  • In this paper, $CO_2$ absorption of scrubber was tested for removal of high concentration $CO_2$. Liquid to gas ratio($18L/m^3$) and Superficial velocity(0.14 m/s) was determined through Lab-scale test. As flow rates increase 1, 2, 3, 4 and $5m^3/min$, $CO_2$ removal efficiency decrease 98.47%, 96.46%, 92.95%, 89.71% and 85.49%. Also, the scrubber operation made energy improvement(5.4%), energy saving(11.5 TOE/year) and greenhouse gases reduction(6.5 TC/year).

A study on the hot gas cleanup of waste-derived fuel gas (폐기물 합성가스의 활용을 위한 고온 정제 공정 적용 연구)

  • Kim, Narang;Yoo, Youngdon;Jung, Kijin;Kim, Jeongheon;Kim, Byunghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.172.2-172.2
    • /
    • 2011
  • 다양한 저급연료나 폐기물로부터 가스엔진이나 연료전지의 연료로 사용하기위한 연료가스를 얻기 위한 방법으로 가스화 기술을 적용할 수 있다. 폐기물의 가스화를 통해 발생된 합성가스에는 CO, $H_2$, $CO_2$와 같은 주요성분 이외에 황화합물($H_2S$, COS), 염소화합물(HCl), 고형 물질(분진)등의 오염물질이 포함되어 있으므로, 이용목적에 따라 적절한 정제 기술이 필요하게 된다. 현재 가장 널리 알려진 저온 습식 정제공정은 장치운전이 쉽고 오염물질 제거효율이 높은 장점이 있으나, 합성가스 온도를 상온까지 낮추기 때문에 현열 손실이 발생하는 단점을 가지고 있다. 고온 건식 정제공정에 의해 $300^{\circ}C$ 이상의 고온에서 오염물질의 제거가 가능하다면 에너지 이용효율을 높일 수 있고, 습식공정에 의해 발생되는 폐수처리에 따른 비용 절감효과도 얻을 수 있다. 폐기물 합성가스를 최종 적용처에 이용하기위한 고온 정제 공정의 적용을 위해 흡착제를 이용하여 탈황, 탈염 실험을 실시하였고, 실험결과로부터 장치 설계의 기초인자를 도출하였다.

  • PDF