Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.4.143

Treatment of Highly Concentrated PCB Containing Insulating Oil by Countercurrent Oxidation Process  

Lee, Chang Soon (Department of Applied Chemistry, Changwon National University)
Kim, Daeik (School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University)
Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
Publication Information
Abstract
Countercurrent oxidation process (COP) was developed and evaluated for treatment of highly concentrated PCB containing insulating oil. The PCB content in insulating oil taken from Haksanmetal company was found to be 1,512 ppm. The COP utilizes a self-sustained flame which propagates itself in a direction counter to the oxygen flow. The flame removes PCBs adsorbed in activated carbon and, at the same time, regenerates activated carbon. The flame temperature was determined from both mass loss of activated carbon and the relative ratio of CO and $CO_2$ exhausted during COP, and showed that its temperature lied in the range of $650-850^{\circ}C$. Removal efficiency of PCBs was achieved above 99.99% for 5% of insulating oil loaded activated carbon with 1 COP in weight ratio. Also, the same removal efficiency was acquired for 60% of insulating oil loaded activated carbon with three consecutive COP. In addition, specific surface area of activated carbon during COP was recovered to almost similar value of virgin activated carbon. It proved that the COP was much effective in removing high concentration of PCBs in insulating oil easily and affordably.
Keywords
COP; PCB; Flame; Removal efficiency; Insulating oil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ryoo, K. S.; Choi. J. H.; Hong, Y. P. Bull. Korean Chem. Soc. 2015, 36, 1082.   DOI
2 Ryoo, K. S. J. Korean Chem. Soc. 1999, 43, 286.
3 Wu, W.; Xu, J.; Zhao, H.; Zhang, Q.; Liao, S. Chemosphere 2005, 60, 944.   DOI
4 Ryoo, K. S.; Byun, S. H.; Choi, J. H. J. Environ. Sci. 2009, 18, 953.
5 Chu, H. J.; Choi, S. W. J. Environ. Sci. 2012, 21, 573.
6 Kim, S. C.; Kim, K. S.; Ham, S. Y.; Heo, J. W.; Lee, J. S.; Seok, K. S.; Lee, J. Y.; Ko, Y. H. J. Korea Soc. Waste Manage. 2012, 29, 616.
7 Yak, H.; Lang, Q. Y.; Wai, C. M. J. Environ. Sci. Technol. 2000, 34, 2792.   DOI
8 Ryoo, K. S.; Byun, S. H.; Choi, J. H.; Hong, Y. P.; Ryu, Y. T.; Song, J. S.; Lee, H. Bull. Korean Chem. Soc. 2007, 28, 520.   DOI
9 Martinez-Guizarro, K.; Ramadan, A.; Gevao, B. Chemosphere, 2017, 168, 147.   DOI
10 Betterton, E. A.; Hollan, N.; Arnold, R. G.; Gogosha, S.; Mckim, K.; Liu, Z. J. Environ. Sci. Technol. 2000, 34, 1229.   DOI
11 Kuipers, B.; Cullen, W. R.; Mohn, W. W. J. Environ. Sci. Technol. 2000, 35, 3579.
12 Jones, C. G.; Silverman, J. Al-sheikhly, M. J. Environ. Sci. Technol. 2003, 37, 5773.   DOI
13 Manzano, M. A.; Perales, J. A.; Quiroga, J. H. Chemosphere 2004, 57, 645.   DOI
14 Lee, S.; Seo, B. Clean Technol. 2005, 11, 29.
15 Manzano, M. A.; Perales, J. A.; Sales, D.; Quiroga, J. M. Chemosphere, 2004, 53, 655.
16 Stolarski, M.; Gryglewicz, S. Pol. J. Appl. Chem. 2003, 1, 15.
17 Murena, F.; Schioppa, E. Appl. Catal. B-Environ. 2002, 27, 257.