• Title/Summary/Keyword: $COP_c$

Search Result 320, Processing Time 0.029 seconds

Drying and Low Temperature Storage System of Agricultural Products using the Air to Air Heat Pump (II) - Performance of Low Temperature Storage for Apples - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (II) - 사과의 저온저장 성능 -)

  • Kang, Y.K.;Han, C.S.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.102-108
    • /
    • 2007
  • Heat pump systems are recognized to be heating and cooing systems. In this study, to check the practical application possibility of heat pump systems as low temperature storage systems and get basic data, apples of a long term storage items were stored and performance of low temperature storage and quality changes of apples were evaluated. Cooling coefficient of performance of the system was from 1.1 to 1.3. Although ambient air temperature varied widely from $-13^{\circ}C$ to $29.6^{\circ}C$ during low temperature storage period from January to June, the average temperature of low temperature storage chamber was $1.1^{\circ}C$ at setting temperature of $1.5^{\circ}C$. Sucrose of apples stored by the heat pump decreased from initial sucrose of 15.4% (Brix number) to final sucrose of 14.3%. Weight loss ratio of apples was 9.7% and internal and external view of apples after low temperature storage were very satisfactory with the naked eye.

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Simulation of the Economizer Performance of a Screw Compressor Using R22 and R407C (R22와 R407C를 적용한 스크류 압축기의 이코노마이저 성능 시뮬레이션)

  • Kim, Yeong-Il;Park, Sang-Hyeon;Jang, Yeong-Su;Kim, Yong-Chan;Nam, Im-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.465-473
    • /
    • 2002
  • Screw compressor type chiller is widely used in refrigeration for capacity over 30 RT. To enhance the chiller performance, an economizer which increases the cooling capacity and COP can be adopted. In this study the performance of an economizer is studied by using a simulation program. Simulation results are compared with experiment data to verify the validation of a simulation program. Maximum economizer injection pressure is estimated and the performance of an economizer for various evaporation and condensation temperatures is calculated. From the results, the performance enhancement of an economizer by using R22 and R407C is compared.

Drying and Low Temperature Storage System for Agricultural Products Using the Air to Air Heat Pump (I) - Drying Performance - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (I) - 건조 성능 -)

  • Kang, Youn-Ku;Han, Chung-Su;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.20-29
    • /
    • 2007
  • Korean farmers have purchased agricultural dryer and low temperature storage system apart. In this study, the system was designed and constructed to investigate the practical application possibility of the air to air heat pump as drying and low temperature storage system for agricultural products with providing basic data. The performance and drying characteristics of the system evaluated by drying red pepper. The value of coefficient of performance of the system for heating was from 1.8 to 2.2 when ambient air temperature varied from 13$^{\circ}C$ to 23$^{\circ}C$. For operating the heat pump as dryer for drying red pepper by setting three drying air temperature of 50, 55 and 60$^{\circ}C$, specific moisture extraction rates meaning amount of energy consumption for removing moisture of 1kg from red pepper were 1.095, 1.017 and 1.094 kg$_{water}$/kWh, respectively. The drying period up to moisture ratio of 0.02 were 31, 26 and 21 hour, respectively. The lightness, redness, yellowness and chroma differences of red pepper dried by the heat pump dryer were lowered than those of red pepper dried by conventional heated air dryer except for yellowness difference at drying air temperature of 60$^{\circ}C$.

Simulation Study on the Performance Characteristics in the Solar Hybrid R744 Heat Pump for Residential Applications (주거용 태양열 하이브리드 이산화탄소 열펌프 시스템의 성능특성에 관한 해석적 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.678-686
    • /
    • 2011
  • Simulation study on the operating characteristics in the solar hybrid R744 heat pump system for residential applications was carried out with heat pump operating temperature, outdoor temperature and solar radiation. As a result, collector operating time is decreased by 1.5 hours due to the increase of water temperature in the heat storage tank when the heat pump operating temperature rises. Heat pump operating time is reduced by 19.4% owing to the high temperature of a heat storage tank. Besides, indoor heating time is decreased from 10.3 to 5.5 hours as the indoor temperature increases from $3^{\circ}C$ to $11^{\circ}C$. In addition to, when the solar radiation rises from 10 to 20 MJ/$m^2$, the maximum outlet temperature of a solar collector is increased from $65^{\circ}C$ to $71^{\circ}C$.

Low Temperature Latent Heat Storage Material of Cooling Characteristics According to Concentration of TMA (TMA 농도에 따른 저온잠열축열물질의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyun-Ho;Chung, Nak-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity are increased and COP are decreased due to supercooling of water in the course of phase change from liquid to solid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N$) of 20~25 wt% as a low temperature latent heat storage material. The results showed that the phase change temperature are increased and the supercooling degree and the specific heat are decreased according to the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$ and the supercooling degree of $8.0^{\circ}C$, retention time of liquid phase for 651sec and specific heat of 3.499 kJ/kgK in the cooling process. This expressed good than different concentration of TMA cooling characteristic. Like this, to apply TMA 25wt%-water clathrate compound is determined by advantageous as the low temperature latent heat storage material.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Control of Inverter Frequency (인버터 주파수 제어에 따른 CO2용 수냉식 열펌프의 성능 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4721-4726
    • /
    • 2010
  • The performance characteristics of water-chilling heat pump using CO2 for the control of inverter frequency was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter flow type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4m length. The experimental results summarize as the following: for constant inlet temperature of evaporator and gas cooler, as mass flow rate, compression ratio and discharge pressure increases with the inverter frequency. And heating capacity and compressor work increases, but coefficient of performance(COP) decreases with the inverter frequency of compressor. As inlet temperature of secondary fluid in the evaporator increases from $15^{\circ}C$ to $25^{\circ}C$, compression ratio and compressor work decreases, but mass flow rate, heating capacity and COP increases with the inverter frequency of compressor. The above tendency is similar with performance variation with respect to the variation of inverter frequency in the conventional vapor compression refrigeration cycle.

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju (발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가)

  • Moon, Sungbu;Hyun, Myung-Taek;Heo, Jaehyeok;Lee, Dong-Won;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 3 km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. The preoperational tests proved that the water temperature drop through the pipeline transporting extracted heat was less than $2^{\circ}C$. The COP (coefficient of performance) of the heat pump was higher than 4.0, and hot water with the maximum temperature of $50^{\circ}C$ could be supplied to greenhouse facilities by utilizing wasted heat from thermal effluent.