• Title/Summary/Keyword: $COD_cr$

Search Result 332, Processing Time 0.028 seconds

Nitrogen Removal from Wastewater by a Multi-stage Bio-reactor (다단 생물반응기에 의한 질소제거)

  • 최규철;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.91-103
    • /
    • 1998
  • Design data for COD and nitrogen removal from wastewater were collected from Pilot's Multi-stage Bio-reactor. Hyraulic conditions and pollutant loadings were varied in order to optimize the biological and operational parameters. Pilot's experimental results summarize as followings. 1. T-N removal efficiency in the organic volumetric loading 0.2 kgCOD/m$^{3}$·d was obtained as maxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.. 2. Nitrification reaction was shown as maxium in the SCOD$_{cr}$/NH$^{+}$-N ratio of 6.5 and in more ratio than this it was decreased. Denitrification rate was the maxium as 85% in more than 7.5 of SCOD$_{cr}$/NO$_{x}$-N ratio and in the ratio over this ratio it becomes constant. 3. By utilizing an applied new model of Stover-Kincannon from Monod's kinetic model, concentration of T-N in the effluent according to flow quanity in the influent was estimated as 8.74 and -67.5 respectively. The formula for estimating T-N concentration of effluent was obtained like this: N$_e$=N$_0$(1- $\frac{8.74}{(QN$_0$/A)-67.05}$)

  • PDF

Sewage Disposal by Different Structure of Fluidized Bed Biofilm Reactor (유동층 생물반응기의 구조변화에 따른 하수처리)

  • Park, Jong-Man;Lee, Jae-Yong;Kim, Chul-Kyoung;Koh, Chang-Woong;Kim, Nam-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • The purpose of this study is to investigate the biofilm reactors capable of doing high efficiency treatment. Vertical fluidized bed biofilm reactor(VFBBR) and spiral fluidized bed biofilm reactor(SFBBR) was used for their performence in biodegradation of artificial sewage. The factors influencing the efficiency of those reactors were compared with difference of physical condition. They had same size but different structure to gain access of its unique characteristics. When recycle solution with flow rate of 22 mL/min and artificial sewage with flow rate of 2~10 mL/min were fed into two reactors in aerobic state, the average $COD_{cr}$, removal rate for biodegradation of SFBBR was greater than VFBBR. After reactor feed sewage was constantly maintained as flow rate of 4 mL/min and the recycle solution were changed to 10~32 mL/min respectively, the average $COD_{cr}$ removal rate of artificial sewage in SFBBR was greater than VFBBR. In this experiment for addition of support media into two reactors SFBBR was 4.1% excellent than VFBBR. Above all, SFBBR excelled VFBBR in boidegradation of organic matter in sewage.

Analysis for Removal Efficiency of Non-point Pollution Sources by Constructed Wetlands (인공습지 형태에 따른 비점오염저감효율 분석)

  • Lee, Sang Hyuk;Kim, Lee Hyung;Cho, Hye Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.102-108
    • /
    • 2014
  • Studies of non-point pollutant treatment facilities have widely been conducted for a decade, but natural non-point pollutant treatment facilities implemented on roads have not been carried out for the removal efficiency of non-point pollution sources. This study analyzed the removal efficiency of non-point pollution sources from constructed wetlands using monitoring and event mean concentration method. As a result of this study, removal efficiency of general non-point pollution sources as TSS, COD, BOD is relatively good, but removal efficiency of TN, TP, Cr, Zn, Pb is very small or nothing.

A Study on the Dye Wastewater Treatment by Advanced Oxidation Process (고급산화공정을 이용한 염료폐수의 처리기술 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Park, Sei Joon;Kang, Min Gu;Kim, Jong Sung;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

Treatment of Refractory Organics in Dyeing Wastewater by Using Cell Immobilized Pellets (고정화담체를 이용한 염색폐수의 난분해성 유기물질 처리)

  • Han, Duk-Gyu;Bae, Woo-Keun;Cho, Young-Jin;Won, Ho-Shik;Lee, Yong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.917-922
    • /
    • 2005
  • The wastewaters from textile and dyeing industries are difficult to treat due to its high pH, temperature, color intensity and non-biodegradable organic contents. This study investigated the removal of recalcitrant organics in a dyeing wastewater by using a packed bed reactor (PBR) that contained cell-immobilized pellets. The feed, obtained from an effluent of a biological treatment plant, had $SCOD_{Cr}$ of 330 mg/L and $SBOD_5$ of 20 mg/L on average. In immobilizing the cells to a Polyethylene Glycol(PEG) based medium, activated sludges from either a sewage treatment plant or an industrial wastewater treatment plant were used. When the empty bed contact time (EBCT) was above 8 hrs in the PBR, the $COD_{Cr}$ removal efficiency was over 50% and the $COD_{Mn}$ concentration was 72 mg/L or lower on average, which was substantially lower than the discharge standard of 90 mg/L. The results indicated that the optimum EBCT in the PBR was 8 hrs. The PBR with cell-immobilized pellets was effective as an advanced treatment process after an activated sludge process for treating dyeing wastewaters.

Necessity of Refractory Organic Matters Management in Total Maximum Daily Loads (TMDLs) (수질오염총량관리제에서 난분해성 유기물질 관리 필요성 및 개선방안)

  • Park, Jae Hong;Park, Bae Kyoung;Lee, Jae Kwan;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.393-399
    • /
    • 2013
  • To control organic matters, it needs to manage not only biodegradable organic matters but also refractory organic matters. Refractory organic matters from municipal wastewater, industrial wastewater, non-point sources and etc., have been continuously discharged to the near watersheds. It is estimated that the refractory organic matter ratios are continuously increased in waterbody. In watersheds of the Total Maximum Daily Loads (TMDLs), it was investigated that COD/BOD ratios increased in many unit watersheds of the 4 major river basins. The portions COD/BOD ratios increased were found to be a 97% of Geum River unit watersheds, a 81% of Yeongsan/Seumjin River unit watersheds, a 78% of Nakdong River unit watersheds, a 70% of Han River unit watersheds, respectively. Therefore, it has become important for establishment of effective management strategies to control refractory organic matter in watersheds of the Total Maximum Daily Loads (TMDLs). In order to properly manage organic matters including refractory organic matters, the present organic indicator (BOD) has to be converted to TOC (or COD). Compared to COD and BOD, TOC, as a organic matter indicator, is evaluated more appropriate.

Distributions of Organic Matter and Trace Metals in Intertidal Surface Sediment from the Mokpo-Haenam Coast (목포-해남 연안 조간대 퇴적물중 유기물 및 미량금속 분포 특성)

  • Hwang, Dong-Woon;Kim, Pyoung-Joong;Jung, Rae-Hong;Yoon, Sang-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.454-466
    • /
    • 2013
  • To evaluate the organic matter and trace metal pollution in intertidal sediment of the coastal zone, various geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], acid volatile sulfide [AVS], and metals [Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As]) were measured for the intertidal surface sediment of the mainland and islands between Mokpo and Haenam in the southwestern coast of Korea. The surface sediments consist mainly of finer sediments, such as mud and silt. The concentrations of IL, COD, and trace metals in intertidal sediment were relatively high in the shoreline of the mainland than in that of islands and those in some stations exceeded the sediment quality guidelines (SQGs). Moreover, the concentrations of IL, COD, and trace metals (except As) in sediment showed relatively good positive correlations with mean grain size, indicating that the concentrations of organic matter and trace metals in intertidal sediment of the study region are dependent on grain size of sediment. Pollution evaluation for trace metals using geochemical assessment techniques, such as enrichment factor, geoaccumulation index, and SQGs, suggested that the intertidal sediments in the study region show light pollution with Cr and moderate pollution with As. More extensive interdisciplinary studies are required to determine the potential causes of As pollution in intertidal sediment.

Predictation of the Concentrations and Distributions of Refractory Organic Matters in Wastewater using Spectroscopic Characteristics (분광특성을 이용한 하·폐수시료 내 난분해성 유기물 농도 및 분포 예측)

  • Lee, Bomi;Park, Min-Hye;Lee, Tae-Hwan;Hur, Jin;Yang, Heejung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.560-567
    • /
    • 2009
  • Treated or untreated wastewater may be a major source of refractory organic matters (R-OM) in drinking water sources. For this study, spectroscopic characteristics of wastewater OM were investigated using the samples from 20 wastewater treatment plants, which are located at the upstream of the lake Paldang, to suggest a estimate index for R-OM in wastewater. R-OM was quantified by measuring total organic carbon (TOC) concentration of the wastewater samples remaining after 28-day dark incubation. Among the traditional OM indices such as chemical oxygen demand (COD) and initial TOC, CODMn showed the lowest correlation coefficients with R-TOC of the samples. The ratios of carbonaceous biochemical oxygen demand (CBOD) to $COD_{Cr}$ had a better correlation with the percent distribution of R-OM than $BOD/COD_{Cr}$ ratios. terrestrial humic-like fluorescence (THLF) exhibited the highest correlation coefficient with R-TOC among the indices obtained from the synchronous fluorescence spectra of the samples. Milori index, one of the humification indices, showed a good correlation with the percent distribution of wastewater. This study demonstrated that fluorescence properties might be a better indices to estimate the concentrations and the distributions of wastewater OM compared to the specific UV absorbance (SUVA) values. Some useful formulas based on OM spectroscopic characteristics were finally suggested to predict R-OM in wastewater.

Reduction Efficiency of the Stormwater Wetland from Animal Feeding-Lot (강우유출수 처리목적 인공습지의 강우시 오염물질 저감특성에 관한 연구)

  • Park, Kisoo;Niu, Siping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • Stormwater wetland targeted to treat the rainfall runoff from cow feeding-lot basin has been monitored from May 2010 to November 2011. Reduction efficiency estimated based on 20 rainfall event monitoring was 88%, 54%, 70%, 31%, and 64% for TSS, BOD, $COD_{Cr}$, TN, and TP, respectively. Theoretically, as rainfall depth increases, hydraulic exchange ratio has to be increased. When the exchange ratio approaches to 1 (usually design goal), TSS reduction efficiency was estimated about 55%. Uncertainty in reduction efficiency of the stormwater wetland is normally very high due to the continuous rainfall activity, its magnitude and intensity, antecedent dry days, and other natural variables which can not be controlled by experiment conductors. In this study, predominant affecting variables was found to be hydraulics caused by consecutive rainfall events having different intensity and algal growth during dry days.

Assessment of Water Quality and Pollutant Loads on Agricultural Watershed in Jeonbuk Province (전북지역 농업용 하천유역의 수질과 부하량 특성)

  • Uhm, Mi-Jeong;Moon, Young-Hun;Ahn, Byung-Koo;Shin, Yong-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2008
  • This study was conducted to evaluate water quality and pollutant loads on small agricultural watershed in Jeonbuk province. The EC level of investigated watershed ranged from 0.07 to 0.52 dS/m, BOD level ranged from 0.1 to 5.0 mg/L, and $COD_{Cr}$ level ranged from 0.6 to 17.7 mg/L. As above, contents of water quality indicators covered wide range, but each indicator was alike in mean content every other year. The contents of EC, $Ca^{2+},\;Mg^{2+},\;K^+\;and\;Na^+$ were decreased in rainy season, but the contents of BOD, $COD_{Cr},\;COD_{Mn}$, T-N and T-P were not greatly different as compared to dry season. And high content of SS showed substantial sediments near the surface flow out and influence on water system in rainy season. The pollutant loads measured in terminal of watershed were $9.6{\sim}757.9$ kg/day for BOD, $51.2{\sim}1418.5$ kg/day for T-N and $0.3{\sim}44.7$ kg/day for T-P. The pollutant loads of BOD, T-N and T-P in rainy season increased several times as compared to dry season. In rainy season, watershed with more than 30% in the proportion of paddy field to land showed relatively low discharge and pollutant loads in comparison to watershed with less than 30%. The discharge of watershed in rainy season increased 5.7times compared with the dry season in watershed with less than 30% in the proportion of paddy field to land, whereas was only 2.3times in watershed with more than 30%. The correlation coefficient($R^2$) of regression between discharge and pollutant loads of T-N were higher than those of BOD and T-P.