• Title/Summary/Keyword: $COD_{mn}$

Search Result 283, Processing Time 0.03 seconds

Runoff Characteristics of Non-point Source Pollutant Loads Generated on Golf Course (골프장에서 발생하는 비점오염원 유출특성)

  • Shin, Minhwan;Choi, Jaewan;Choi, Younghun;Park, Woonji;Won, Chulhee;Shin, Dongsuk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.784-793
    • /
    • 2011
  • Activities on golf courses are believed to contribute to the degradation of water quality in receiving waters due to the excessive use of farm chemicals including fertilizers and pesticides. The objective of this study was to collect basic data that could explain the characteristics of non-point source (NPS) pollution discharged from a golf course. Twenty seven water quality monitoring was conducted at a golf course during the rainy season of 2008 and 2009. The results indicated that the ranges of the Event Mean Concentration (EMC) at the golf course were $BOD_5$ 1.8~11.3 (ave. 5.6) mg/L, $COD_{Mn}$ 19.2~51.4 (ave. 39.6) mg/L, TOC 11.0~31.0 (ave. 16.8) mg/L, TN 1.545~16.098 (ave. 5.623) mg/L, TP 0.230~4.528 (ave. 1.525) mg/L, and SS 2.2~57.3 (ave. 10.1) mg/L. The unit loads of the golf course estimated were $BOD_5$ $3.35kg/km^2/day$, SS $6.43kg/km^2/day$, $COD_{Mn}$ $30.00kg/km^2/day$, TN $4.04kg/km^2/day$, TP $1.14kg/km^2/day$, and TOC $12.16kg/km^2/day$. Golf courses are currently classified as a grass field in which the unit loads are different from golf courses. Therefore, it was recommended that golf courses need to be separated from the grass field when the surveys and modelings for Total Maximum Daily Load (TMDL) development and the evaluation of TMDL implementation were performed.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(II): Focusing on the Outflow Characteristics of the C Industrial Complex by Rainfall Event (산업단지 비점오염원의 유출특성(II): C산업단지의 강우사상별 유출특성을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of calculating EMC according to the outflow amount by rainfall event, the 1st rainfall showed EMCs ranges of BOD, CODMn, SS, T-N, and T-P of 1.32~48.76, 3.32~43.75, 2.89~199.43, 2.76~8.93, 0.08~068, and the 2nd rainfall was 0.5~2.9, 2.71~7.13, 2.82~174.94, 1.33~4.03, 0.01~1.28 mg/L, respectively. As a result of calculating the ratio of cumulative outflow and cumulative pollution load, most of the pollution load was less than the rainfall outflow, but over time, the initial washing phenomenon occurred as the ratio of cumulative rainfall outflow and cumulative pollution load increased to more than 1.

A Fundermental Study on Stabilization in Municipal Waste Landfill Site (도시폐기물 매립지의 안정화에 관한 기초연구)

  • 김은호;김순호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • The investigation was carried out to analyze the generation and the composition of landfill gas generated from inserted pipe wells into the underground by boring operation and also study the undecomposed waste characteristics by open-cut test at S. waste landfill site in Pusan city. Pilot test was conducted for stabilization. The experimental results from this study were summerized as follows. ; Since COD matter was easuer decomposed than COD matter for continuously biological stabilization in underground, it seemed that BOD and CO $D_{Mn}$ were in the range of 854~4,813mg/$\ell$ and 1,156~6,977mg/$\ell$ and their ratio were generally as high as 0.55~0.74. As C $H_4$ compositions of generated gas were measured in the range of 37.36~60.1%, we could know that C $H_4$ gas was actively generated. Organic matters by open-cut test averaged 13.4~16.6% at each landfill layer, and considering rate of combustible compositions(36.2~66.5%) for landfilling wastes, they have been actively decomposed. The measured and theoretical values of generated gas in waste landfill site were almost similar to C $H_4$ 50.0% and 53.4%, $CO_2$ 39.63% and 45.24%, and after 0.5$^{\circ}C$ with heavy depth and long landfill period. From the results of pilot test for stabilization, after 180 days organic matters were actively decomposed beyond 2.2 times in facultative aerobic lystimeter(B) to exsiting anaerobic lysimeter(A). Therefore, it seemed that landfill site was of benefical to the conversion of facultative aerobic for stabilization.

  • PDF

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Characteristics and Quantity of Slurry Produced by Swine Slurry Farms (슬러리 돈사에서의 슬러리 발생량 및 이화학적 특성)

  • Kwag, J.H.;Choi, H.C.;Choi, D.Y.;Kang, H.S.;Park, C.H.;Han, J.D.;Jeon, B.S.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 2002
  • This study was conducted to determine the volume of pig slurry productinn and the characteristics from 4 swine farms. For the composition of pig slurry produced, contents of N, $P_2O_5$ and $K_2O$, were 0.13, 0.25 and 0.13% in slurry, respectively. Water pollutant concentration in slurry of swine farms, $BOD_5$, $COD_MN$, SS, T-N and T-P, was $24,047mg/{\ell}$, $30,232mg/{\ell}$, $36,833mg/{\ell}$, $2,805mg/{\ell}$, $465mg/{\ell}$, respectively. The average volume of pig slurry was 6.30 ${\ell}/head/day$ and 6.32 ${\ell}$ in spring, 6.69 ${\ell}$ in summer, 6.09 ${\ell}$ in autumn, and 6.12 ${\ell}$ in winter. The average moisture content of slurry was 95.8%. The composition of slurry produced by pig farms.

  • PDF

Characteristics of NPS Pollution and Calculation of Pollutant Loads in a Song-cheon watershed during the Snow Melting Season (고랭지 밭 유역의 융설에 의한 비점오염원 특성과 오염부하산정)

  • Park, Byung-Jun;Choi, Yong-Hun;Shin, Min-Hwan;Seo, Ji-Yeon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.269-273
    • /
    • 2011
  • 본 연구는 도암댐 상류 고랭지 농업지역의 이른 봄철 융설에 의해 발생되는 비점오염 물질의 배출 특성을 규명하고자 수행하였다. 연구는 2010년 2월 중순부터 4월 말까지 수행하였다. 연구지역에서는 2009년 11월 2일부터 2010년 4월 29일까지 눈이 내렸으며, 일 최대 적설량은 2월 11일에 기록된 59.3 cm이고, 총 적설량은 372.1 cm로 나타났다. 연구결과 융설에 의해 발생되는 단위 면적당 유량은 $77.05\;m^3$/ha/day로서 겨울철 평시 유량 $26.99\;m^3$/ha/day에 비해 두배 가까이 증가하였다. 유량의 변화는 기온의 영향을 많이 받는 것으로 나타났으며, 유량의 변화는 탁도와 SS 그리고 $COD_{Mn}$의 농도 변화에 영향을 주는 것으로 조사되었다. 오염물질 항목 중 SS와 COD의 유량가중평균농도는 각각 986.0 mg/L와 16.3 mg/L로서 겨울철 평시 농도보다 크게 증가하였는데, 이는 융설시 발생한 유출수에 의해 미세한 토양입자의 유실과 함께 오염물질도 배출된 결과로 판단된다. 그러나 T-N과 T-P의 농도는 큰 변화가 없는 것으로 조사되었다. 본 연구결과에 기초할 때, 담수호 상류에 위치한 고랭지 지역에서는 겨울철 적설량이 많고 융설에 의한 수질오염 문제가 하는 것으로 판단된다. 따라서 해빙기 융설로 인해 발생되는 비점오염 물질의 정량화에 대한 연구가 체계적이고 지속적으로 수행될 필요가 있다. 특히 우리나라의 겨울철 적설량과 기온은 연도별로 많은 편차가 있고, 연구결과 다량의 오염물질이 배출되기 때문에 융설에 대한 연구는 반드시 수행되어야 할 것으로 판단된다.

  • PDF

Effect of NPS Pollution Reduction on Application of SRI (SRI 벼재배기술 적용에 따른 논비점오염부하 저감효과 평가)

  • Park, Woon-Ji;Seo, Ji-Yeon;Won, Chul-Hee;Park, Ki-Wook;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.263-263
    • /
    • 2011
  • 본 연구에서는 전 세계적으로 급속히 보급되고 있는 비담수재배를 기초로 하는 SRI(System of Rice Intensification) 벼 재배방법을 우리나라의 논 농업에 최초로 적용하여 관개기간동안 유출되는 오염부하량과 기존의 담수재배인 관행 시험포에서 유출되는 오염부하량을 산정하여 저감효과를 비교 평가하였다. 실험처리는 대조구인 담수재배(관행) 1처리(재식거리 $30{\times}15cm$)와 SRI 재배($30{\times}30cm$, $40{\times}40cm$, $50{\times}50cm$) 3처리로 2반복으로 하여 가로 5 m, 세로 15 m 크기의 논 시험포를 총 8개 조성하였다. 그리고 관개기간동안(2010년 5월부터 9월) 관개량, 강우량 그리고 강우 유출량 측정하고 수질시료를 채취하여 오염부하를 산정하였다. 관행재배의 시비와 제초 등의 포장관리는 표준재배법에 준하여 진행하였으며, SRI 재배의 경우 물관리를 제외하고 관행재배와 동일하게 영농관리를 수행하였다. 연구기간동안 총 63회의 강우가 발생하였으며, 이중 20 mm 이상의 강우는 17회로, 일 강우량은 20.5 mm에서 195 mm의 범위를 보였다. 강우 모니터링 결과, 20 mm 이상의 강우에서 유출이 발생하였다. SRI 시험포에서의 유출계수는 0.74~0.83 범위로 관행시험포의 유출계수인 0.83~0.92 범위보다 낮은 값을 보였으며, 시험포에 따라 차이는 있으나 5~13%의 유출수 저감효과를 나타내었다. SRI시험포의 SS, $COD_{Cr}$, $COD_{Mn}$, BOD, TN, TP의 총 오염부하량은 각각 874 kg/ha, 199.5 kg/ha, 47 kg/ha, 13 kg/ha, 36.9 kg/ha, 2.92 kg/ha 로서 관행 시험포의 오염부하량에 비해 15.8~44.1 %의 오염물질 저감 효과를 보였다. 특히 SRI 벼재배기술 적용 시 SS 및 BOD와 같은 유기물의 오염부하량 저감효과가 큰 것으로 나타났다.

  • PDF

A Study on Water Quality Changes of Geum River Subwatersheds: In Cases of Tributary (금강수계 소유역내 수질 변화 분석 -소하천을 대상으로-)

  • Han, Ah-Won;Hong, Sun-Hwa;Hwang, Soon-Hong;Kim, Dong-Ho;Lee, Jun-Bae;Lee, Young-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.328-343
    • /
    • 2012
  • BACKGROUND: For effective subwatershed management, it is very important to select the tributaries for improving water quality and understand the characteristics of tributaries. Until now, however, the case study of main streams has been managed. 17 tributaries in Geum river subwatershed were monitored to regulate the source of water contaminations and identify their current situations in this study. METHODS AND RESULTS: As pollution indicators, such as biological oxygen demand($BOD_5$), chemical oxygen demand($COD_{Mn}$), suspended solid(SS), total nitrogen (T-N), total phosphate(T-P) and total organic carbon(TOC) in Geum river were examined from January to December in 2011. The results were as follows : The annual average concentration of nutrients in Yongdam reservoir upsteam was 0.7 mg/L for BOD, 3.0 mg/L for COD, 8.4 mg/L for SS, 2.905 mg/L for T-N, 0.035 mg/L for T-P and 1.6 mg/L for TOC. Water quality of Daechung reservoir upstream was mostly similar tendency in comparison to Yongdam reservoir upstream. Among the 22 tributaries, water quality in Daechung reservoir downstream was more polluted. T-N contents were significantly high in Miho B4 located Daechung reservoir downstream(annual average concentration: 13.53 mg/L). In cases of Miho A1, A2 and C1, pollution degree was worsened during rainy season expecially. CONCLUSION(S): For improving water quality of Geum river subwatershed, the tributaries in the Mihocheon area should be preferentially considered. Mihocheon tributary is the highest in pollution site, and thus a study on long-term effects should be research.

Characteristics and Quantity of Wastewater Produced by Swine Farms (양돈농가에서의 돈사배출수 발생량 및 이화학적 특성)

  • 곽정훈;최희철;강희철;최동윤;김재환;한정대;전병수;김형호
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.173-176
    • /
    • 2001
  • This study was conducted to determine the volume of pig wastewater and It's characteristics from 6 pig farms. The results obtained in this study was summarized as fellow; The volume of pig waste water was 4.15 l/head/day and 4.04 l in spring, 5.20 l in summer, 4.11 l in fall, and 3.44 $\ell$ in winter. The average moisture content of faces and urine was 74.1%, 98.4%, respectively. Water pollutant concentration, $BOD_5,\;COD_{Mn}$, SS, T-N and T-P, excreted from pig was 56,847mg/l, 50,658mg/l, 119,750mg/l, 2,683mg/l, 139mg/l in feces and 2.951mg/l 2,002mg/l, 1,983mg/l, 2,921mg/l, 35mg/l wastewater of swine farms, respectively.

  • PDF