• Title/Summary/Keyword: $CH_4$ oxidation

Search Result 184, Processing Time 0.022 seconds

Conversion Efficiency of Catalyst for Lean-bum Natural Gas Vehicles with Steady and Unsteady State Temperature Change (정상 및 비정상 온도변화에 따른 린번 천연가스 자동차용 촉매의 정화성능)

  • Cho Byung-Chul;Juhng Woo-Nam;Piao Fengai;Lee Choon-Hee;Lee Jang-Hee;Yun Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.123-130
    • /
    • 2005
  • In this study, we evaluated the CH4 and CO conversion efficiencies over the oxidation catalysts for natural gas vehicle with lean-burn system. On the fresh catalyst, the conversion efficiency was increased when the loading of precious metal was increased. On the aged catalyst, the conversion efficiency was decreased as increasing the excess air ratio. We could confirm the measuring conversion efficiency of the unsteady state with the FTIR and that of steady state with the GC The temperature increasing ratio of unsteady state is acceptable from 3$^{\circ}C$/min. to 15$^{\circ}C$/min. for the evaluation of catalyst conversion performance , which has within the 4$\%$ of the difference of conversion efficiency. We observed a physical behavior of the thermal aged catalyst's surface using TEM and BET device. It was found that the precious metal was grown to the micro-scopic size by thermal aging process.

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer

  • Shim, Il-Wun;Noh, Won-Tae;Kwon, Ji-Woon;Jo, Jung-Young;Kim, Kyung-Soo;Kang, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.563-566
    • /
    • 2002
  • Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (유동층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.225-230
    • /
    • 2004
  • Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, $CH_4$ conversion was 91%, and Hz and CO selectivities were both 98% at 850$^{\circ}C$ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane (메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구)

  • Lee, Nan Young;Woo, Je-Wan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • $N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Kinetics and Mechanism of the Oxidation of Alcohols by C9H7NHCrO3Cl (C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young-Cho;Kim, Young-Sik;Kim, Soo-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.378-384
    • /
    • 2018
  • $C_9H_7NHCrO_3Cl$ was synthesized by reacting $C_9H_7NH$ with chromium (VI) trioxide. The structure of the product was characterized by FT-IR (Fourier transform infrared) spectroscopy and elemental analysis. The oxidation of benzyl alcohol by $C_9H_7NHCrO_3Cl$ in various solvents showed that the reactivity increased with increasing dielectric constant(${\varepsilon}$) in the following order: DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. The oxidation of alcohols was examined by $C_9H_7NHCrO_3Cl$ in DMF. As a result, $C_9H_7NHCrO_3Cl$ was found to be an efficient oxidizing agent that converts benzyl alcohol, allyl alcohol, primary alcohols, and secondary alcohols to the corresponding aldehydes or ketones (75%-95%). The selective oxidation of alcohols was also examined by $C_9H_7NHCrO_3Cl$ in DMF. $C_9H_7NHCrO_3Cl$ was the selective oxidizing agent of benzyl, allyl and primary alcohol in the presence of secondary ones. In the presence of DMF with an acidic catalyst, such as $H_2SO_4$, $C_9H_7NHCrO_3Cl$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, and $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308K). The observed experimental data were used to rationalize hydride ion transfer in the rate-determining step.

Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts (메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사)

  • Seo, Ho Joon;Fan, Shijian;Kim, Yong Sung;Jung, Do Sung;Kang, Ung Il;Cho, Yeong Bok;Kim, Sang Chai;Kwon, Oh-Yun;Sunwoo, Chang Shin;Yu, Eui Yeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.581-584
    • /
    • 2008
  • The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared $H^+-kenyaite$(SPK) and the silica-pillared $H^+-magadite$(SPM) were $760m^2/g$ and $810m^2/g$, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively. The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.

Synthesis of Pt-$MoO_3$ Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 백금-삼산화몰리브테늄 전극제조)

  • Shin, Ju-Kyung;Jung, So-Mi;Baeck, Sung-Hyeon;Tak, Yong-Suk
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.435-439
    • /
    • 2010
  • Pt-$MoO_3$ electrodes were fabricated on ITO-coated glass by electrodeposition method using 20 mM hydrogen hexachloroplatinate ($H_2PtCl_6$) and 10 mM Mo-peroxo electrolyte. Deposition order was varied, and catalytic activities of synthesized electrodes were compared with that of pure Pt electrode. Scanning Electron Microscopy (SEM) was utilized to examine surface morphology. The crystallinity of synthesized films was analyzed by X-ray Diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray Photoelectron Spectroscopy (XPS) analyses. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry (CV) and chronoamperometry (CA) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. $MoO_3$ electrodeposited on the surface of Pt showed much higher catalytic acitivity and stability than pure Pt electrode due to the good contact between Pt and $MoO_3$.

NECESSITY OF READY ELECTRON DISPOSAL AND INTERSPECIES HYDROGEN TRANSFER FOR THE UTILIZATION OF ETHANOL BY RUMEN BACTERIA

  • Hino, T.;Mukunoki, H.;Imanishi, K.;Miyazaki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.511-517
    • /
    • 1992
  • Ethanol was utilized by mixed rumen microbes, but addition of pentachlorophenol (25 mg/l), a methanogen inhibitor, suppressed the utilization of ethanol. Carbon monoxide (50% of the gas phase), a hydrogenase inhibitor, more strongly suppressed the utilization of ethanol, propanol, and butanol. These results suggest that the major ethanol utilizers are $H_2$ producers. Ethanol utilization was depressed at low pH (below 6.0). Since methanogens were shown to be relatively resistant to low pH, it appears that ethanol utilizers are particularly sensitive to low pH. Ruminococcus albus and R. flavefaciens in mono-culture produced ethanol from carbohydrate (glucose and cellobiose), even when a high level (170 mM) of ethanol was present. Ethanol was not utilized even in the absence of carbohydrate, but the co-culture of these bacteria with methanogens resulted in the utilization of ethanol, i.e., when $H_2$ was rapidly converted to $CH_4$, R. albus and R. flavefaciens utilized ethanol. These results suggest that ethanol is utilized when the electrons liberated by the oxidation of ethanol are rapidly removed, and ready electron disposal in ethanol-utilizing, $H_2$-producing bacteria is accomplished by the interspecies transfer of $H_2$.