Browse > Article

Synthesis of Pt-$MoO_3$ Electrode by Electrodeposition Method for Direct Methanol Fuel Cell  

Shin, Ju-Kyung (Department of Chemical Engineering, Inha University)
Jung, So-Mi (Department of Chemical Engineering, Inha University)
Baeck, Sung-Hyeon (Department of Chemical Engineering, Inha University)
Tak, Yong-Suk (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.21, no.4, 2010 , pp. 435-439 More about this Journal
Abstract
Pt-$MoO_3$ electrodes were fabricated on ITO-coated glass by electrodeposition method using 20 mM hydrogen hexachloroplatinate ($H_2PtCl_6$) and 10 mM Mo-peroxo electrolyte. Deposition order was varied, and catalytic activities of synthesized electrodes were compared with that of pure Pt electrode. Scanning Electron Microscopy (SEM) was utilized to examine surface morphology. The crystallinity of synthesized films was analyzed by X-ray Diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray Photoelectron Spectroscopy (XPS) analyses. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry (CV) and chronoamperometry (CA) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. $MoO_3$ electrodeposited on the surface of Pt showed much higher catalytic acitivity and stability than pure Pt electrode due to the good contact between Pt and $MoO_3$.
Keywords
electrodeposition; Pt-$MoO_3$; methanol oxidation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 C. He, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 150, A1017 (2003).   DOI   ScienceOn
2 M. Epifani, P. Imperatori, L. Mirenghi, M. Schioppa, and P. Siciliano, Chem. Mater., 16, 5495 (2004).   DOI   ScienceOn
3 D. H. Jung, S. H. Hong, D. H. Peck, R. H. Song, D. R. Shin, and H. N. Kim, J. Korean Electrochem. Soc., 6, 68 (2003).   과학기술학회마을   DOI   ScienceOn
4 J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. S. Kim, Electrochim. Acta, 50, 807 (2004).   DOI   ScienceOn
5 X. Ren, P. Welenay, S. Rhomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000).   DOI   ScienceOn
6 B. Gurau, R. Viswanathan, R. X. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. J. Sarangapani, Phys. Chem., B102, 9997 (1998).
7 M. C. Wu and C. S. Lee, Materials Research Bulletin., 44, 629 (2009).   DOI   ScienceOn
8 X. Zhang and K. Y. Chan, Chem. Mater., 15, 451 (2003).   DOI   ScienceOn
9 K. J. Jeong, C. M. Miesse, J. H. Choi, J. Y. Lee, J. H. Han, S. P. Yoon, S. W. Nam, T. H. Lim, and T. G. Lee, J. Power Sources, 168, 119 (2007).   DOI   ScienceOn
10 Z. D. Wei and S. H. Chan, J. Electroanal. Chem., 569, 23 (2004).   DOI   ScienceOn
11 S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, and E. W. McFaland, Adv. Mater., 15, 1269 (2003).   DOI   ScienceOn
12 B. R. Rauhe, Jr., F. R. McLarnon, and E. J. Cairns, J. Electrochem. Soc., 142, 1073 (1995).   DOI   ScienceOn
13 P. Liu, A. Logadottir, and J. K. Norskov, Korean J. Chem. Eng., 48, 3731 (2003).
14 T. W. Kang, Y. G. Park, J. C. Park, Y. S. Cho, and J. H. Yi, Korean J. Chem. Eng., 19, 685 (2002).   DOI   ScienceOn
15 C. H. Pak, S. J. Lee, S. A. Lee, and H. Chang, Korean J. Chem. Eng., 22, 214 (2005).   DOI   ScienceOn