Synthesis of Pt-$MoO_3$ Electrode by Electrodeposition Method for Direct Methanol Fuel Cell

전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 백금-삼산화몰리브테늄 전극제조

  • Received : 2010.04.13
  • Accepted : 2010.04.13
  • Published : 2010.08.10

Abstract

Pt-$MoO_3$ electrodes were fabricated on ITO-coated glass by electrodeposition method using 20 mM hydrogen hexachloroplatinate ($H_2PtCl_6$) and 10 mM Mo-peroxo electrolyte. Deposition order was varied, and catalytic activities of synthesized electrodes were compared with that of pure Pt electrode. Scanning Electron Microscopy (SEM) was utilized to examine surface morphology. The crystallinity of synthesized films was analyzed by X-ray Diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray Photoelectron Spectroscopy (XPS) analyses. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry (CV) and chronoamperometry (CA) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. $MoO_3$ electrodeposited on the surface of Pt showed much higher catalytic acitivity and stability than pure Pt electrode due to the good contact between Pt and $MoO_3$.

Pt-$MoO_3$ 혼합전극을 20 mM의 $H_2PtCl_6$ 수용액과 10 mM Mo-Peroxo 전해질을 이용하여 전기화학적 증착법에 의해 합성하였다. Pt와 증착 순서를 바꿔가며 혼합 전극을 합성하여 같은 양의 Pt가 증착된 순수한 Pt전극과 메탄올 산화반응 특성을 비교하였다. SEM (Scanning Electron Microscopy) 분석을 통하여 합성된 박막의 표면입자의 형태를 확인하였으며, X-선 회절(X-ray Diffraction)분석과 광전자 분광기(X-ray Photoelectron Spectroscopy; Thermo-scientific, ESCA 2000)분석을 통해 합성된 전극의 결정성과 산화가를 각각 조사하였다. 메탄올 산화에 대한 전기화학적 촉매활성과 안정성을 평가한 결과 Pt를 증착한 후 $MoO_3$를 증착한 전극의 경우, 순수한 Pt전극에 비해 높은 촉매활성과 안정성을 나타내었는데, Pt와 $MoO_3$의 접촉이 좋을 경우 $MoO_3$가 조촉매로 작용해 메탄올 산화반응의 활성이 증가함을 확인하였다.

Keywords

References

  1. B. R. Rauhe, Jr., F. R. McLarnon, and E. J. Cairns, J. Electrochem. Soc., 142, 1073 (1995). https://doi.org/10.1149/1.2044547
  2. D. H. Jung, S. H. Hong, D. H. Peck, R. H. Song, D. R. Shin, and H. N. Kim, J. Korean Electrochem. Soc., 6, 68 (2003). https://doi.org/10.5229/JKES.2003.6.1.068
  3. X. Ren, P. Welenay, S. Rhomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000). https://doi.org/10.1016/S0378-7753(99)00407-3
  4. K. J. Jeong, C. M. Miesse, J. H. Choi, J. Y. Lee, J. H. Han, S. P. Yoon, S. W. Nam, T. H. Lim, and T. G. Lee, J. Power Sources, 168, 119 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.062
  5. Z. D. Wei and S. H. Chan, J. Electroanal. Chem., 569, 23 (2004). https://doi.org/10.1016/j.jelechem.2004.01.034
  6. J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. S. Kim, Electrochim. Acta, 50, 807 (2004). https://doi.org/10.1016/j.electacta.2004.01.116
  7. C. H. Pak, S. J. Lee, S. A. Lee, and H. Chang, Korean J. Chem. Eng., 22, 214 (2005). https://doi.org/10.1007/BF02701487
  8. S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, and E. W. McFaland, Adv. Mater., 15, 1269 (2003). https://doi.org/10.1002/adma.200304669
  9. C. He, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 150, A1017 (2003). https://doi.org/10.1149/1.1583714
  10. P. Liu, A. Logadottir, and J. K. Norskov, Korean J. Chem. Eng., 48, 3731 (2003).
  11. T. W. Kang, Y. G. Park, J. C. Park, Y. S. Cho, and J. H. Yi, Korean J. Chem. Eng., 19, 685 (2002). https://doi.org/10.1007/BF02699318
  12. B. Gurau, R. Viswanathan, R. X. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. J. Sarangapani, Phys. Chem., B102, 9997 (1998).
  13. M. C. Wu and C. S. Lee, Materials Research Bulletin., 44, 629 (2009). https://doi.org/10.1016/j.materresbull.2008.06.034
  14. X. Zhang and K. Y. Chan, Chem. Mater., 15, 451 (2003). https://doi.org/10.1021/cm0203868
  15. M. Epifani, P. Imperatori, L. Mirenghi, M. Schioppa, and P. Siciliano, Chem. Mater., 16, 5495 (2004). https://doi.org/10.1021/cm048997i