• 제목/요약/키워드: $CH_3I$

검색결과 520건 처리시간 0.025초

염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰 (Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction)

  • 이본수;이익춘
    • 대한화학회지
    • /
    • 제18권4호
    • /
    • pp.223-238
    • /
    • 1974
  • 염화포름산 알킬의 할로겐화 이온 교환반응을 반응속도론적으로 연구하고, 이의 전자 구조적 특성을 CNDO/2 MO계산으로 연구하였으며 이로부터 구조와 반응성 간의 관계를 논의하였다. 염화포름산 알킬의 에너지면에서의 가장 안정한 입체배치가 알킬기와 염소원자 사이가 서로 트랜스인 입체배치임을 알았으며, 결합주위의 회전장애가 {\pi}-전자 비편재화에 기인됨을 밝혔다. 염화포름산 알킬은 하전분리가 심한 극성물질이며, 이것이 카르보닐 산소와 알콕시 산소의 효과 및 염소의 효과에 기인됨을 밝혔다. 반응속도에 미치는 용매효과는 $(CH_3)_2CO>CH_3CN{\gg}MeOH$순으로 반응성이 감소되는 작용을 나타냈으며, 친핵성도는 양성자성 용매중에서 $I^->Br^->Cl^-$, 비양자성 용매 중에서 $Cl^->Br^->I^-$이었으며 알킬기의 기여는 $CH_3->C_2H_5->i-C_3H_7-$순이었다. 초기상태와 천이상태의 안정화 기여를 기초로 용매효과를 해석하였으며 초기상태 탈용매화의 특성으로 친핵성도를 논의하였다. 이 반응에 대하여 가장 유리한 메카니즘을 첨가-제거 메카니즘으로 제안하였다. 염화포름산 알킬의 반응성을 결정하는 구조적 요인은 하전, C-Cl 결합에 대하여 ${\alpha}^{\ast}$인 LUMO의 에너지준위 및 이 MO에서 C-Cl결합의 반결합세기임을 밝혔다.

  • PDF

Cycloplatinated Complexes of Thiosemicarbazones. Synthesis and Crystal Structure of [$Ph_2PC_6H_4CHNNC(S)NHCH_3PtCl$]

  • 유동원;강상욱;고재정;최문근
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.305-310
    • /
    • 1997
  • The synthesis and characterization of the platinum heterocyclic carboxaldehyde thiosemicarbazone complexes [NC5H4CRNNC(S)NHR'PtCl] (R=H, R'=CH3(1); R=CH3, R'=CH3(2); R=CH3, R=H(3)) and diphenylphosphinophenyl carboxaldehyde thiosemicarbazone complexes [Ph2PC6H4CHNNC(S)NHRPtCl] (R=CH3(5); R=iC3H7(6); R=Ph(7)) are described. Compounds 1-3 were prepared by reaction of Pt(SEt2)2Cl2 with 2-acetylpyridine-4-alkylthiosemicarbazone in the presence of NEt3. Compounds 5-7 were prepared using Pt(SEt2)2Cl2 in toluene with diphenylphosphinophenyl carboxaldehyde alkylthiosemicarbazone. The compounds have been characterized by microanalysis, NMR (1H, 13C, 31P) spectroscopy, and single-crystal X-ray diffraction. X-ray single crystal diffraction analysis reveals that compound 5 is a mononuclear platinum compound with P,N,S-coordination mode.

Theoretical Calculations of Infrared Bands of CH3+ and CH5+

  • Matin, Mohammad A.;Jang, Joonkyung;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2051-2055
    • /
    • 2013
  • Existing theoretical calculations predict that infrared spectra of the two most fundamental reactive carbo-ions, methyl cation $CH{_3}^+$ with $D_{3h}$ symmetry and protonated methyl cation $CH{_5}^+$ with $C_s(I)$, $C_s(II)$, and $C_{2v}$ symmetries, appear together in the 7-${\mu}m$ region corresponding to the C-H bending modes. Vibrational band profiles of $CH{_3}^+$ and $CH{_5}^+$ have been compared by ab initio calculation methods that use the basis sets of MP2/aug-cc-pVTZ and CCSD(T)/cc-pVTZ. Our results indicate that the bands of rotation-vibration transitions of $CH{_3}^+$ and $CH{_5}^+$ should overlap not only in the 3-${\mu}m$ region corresponding to the C-H stretching modes but also in the 7-${\mu}m$ region corresponding to the C-H bending modes. Five band intensities of $CH{_5}^+$ among fifteen vibrational transitions between 6 and 8 ${\mu}m$ region are stronger than those of the ${\nu}_2$ and ${\nu}_4$ bands in $CH{_3}^+$. Ultimate near degeneracy of the two bending vibrations ${\nu}_2$ and ${\nu}_4$ of $CH{_3}^+$along with the stronger intensities of $CH{_5}^+$ in the three hydrogen scrambling structures may cause extreme complications in the analysis of the high-resolution carbo-ion spectra in the 7-${\mu}m$ region.

방향족아민과 요오드 또는 일염화요오드 사이의 錯物에 관한 연구 (The Complexes of Aromatic Amines with Iodine or Iodine Monochloride in Carbon Tetrachloride)

  • 최상업;이부영
    • 대한화학회지
    • /
    • 제11권3호
    • /
    • pp.100-104
    • /
    • 1967
  • 사염화탄소 용액에 대하여 分光光度法으로 연구한 결과 아닐린, N,N-디메틸아닐린 및 N,N-디에틸아닐린과 요오드 또는 일염화요오드 사이에 1:1 錯物이 형성됨을 알았다. 이들 錯物형성에 대한 실온에서의 평형상수는 다음과 같다. $C_6H_5NH_2{\cdot}I_2\;2.05$, $C_6H_5N(CH_3)_2{\cdot}I_2\;15.2$, $C_6H_5N(C_2H_5)_2{\cdot}I_2\;35.5$, $C_6H_5NH_2{\cdot}ICl\;18.5$, $C_6H_5N(CH_3)_2{\cdot}ICl\;25.6$, 및 $C_6H_5N(C_2H_5)_2\;42.0$ l $mole^{-1}$.

  • PDF

오르토 치환 아닐린과 요오드 사이의 착물에 관한 연구 (The Complexes of Iodine with Ortho-Substituted Anilines in Carbon Tetrachloride)

  • 이부영;최상업
    • 대한화학회지
    • /
    • 제15권6호
    • /
    • pp.312-317
    • /
    • 1971
  • 아닐린, o-톨루이딘, o-에틸아닐린, o-클로로아닐린등과 $I_2$사이의 상호작용을 자외선 분광광도법으로 조사한 결과 $CCl_4$ 용액내에서 아닐린 또는 상기 o-치환 아닐린과 $I_2$ 사이에 1:1 착물이 형성됨을알았다. 이들 착물의 실온에서의 형성상수를 구한 결과 다음과 같은값을 얻었다. $C_6H_5NH_2{\cdot}I_2,\;12.8lmole^{-1};\;o-CH_3C_6H_4NH_2{\cdot}I_2,\;9.31l mole^{-1};\;o-C_2H_5C_6H_4NH_2{\cdot}I_2,\;3.15l mole^{-1};\;o-ClC_6H_4NH_2{\cdot}I_2,\;0.576 l mole^{-1}$. 본 실험결과를 전 실험의 결과와 비교하면 $I_2{\cdot}$아민 착물의 안정도가 다음 순으로 감소함을 알 수 있다. $C_6H_5N(C_2H_5)_2 >C_6H_5N(CH_3)_2 >C_6H_5NH_2 >o-CH_3C_6H_4NH_2 >o-C_2H_5C_6H_4NH_2 >o-ClC_6H_4NH_2$ 이들 착물의 상대적 안정도는 치환기의 유발효과와 입체효과에 의하여 설명될 수 있다.

  • PDF

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

Theoretical Studies on the Base-Catalyzed Deprotonation of 4-Phenacylpyridinium Cations

  • 김왕기;전영이;손창국;김창곤;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권2호
    • /
    • pp.193-197
    • /
    • 1997
  • Theoretical studies on the base-catalyzed deprotonation of 4-phenacylpyridinium cations, R1-CO-CH2-C5H4N-R2, I (R1=YC6H4 -and R2=CH3), and II (R1=C6H5 and R2=CH2C6H4Y) have been carried out with bases, NH3 and XC6H4NH2 using AM1 MO method. The Brψnsted α values are 0.20 and 0.22 and the βB values are 0.62 and 0.61, respectively for cations I and II. The negative Ⅰ (=α-βB) values obtained are in accord with the experimental results in aqueous solution, although the theoretical gas-phase α values for I are somewhat smaller than the experimental values in water due to neglect of solvation effect. It has been stressed that the Brψnsted α is distorted not only by the lag in the resonance and solvation development in the carbanion, but also by the difference in the distance between the anionic center and substituents in the TS and in the product anion.

Vacuum Ultraviolet Photolysis of Ethyl Bromide at 104.8-106.7 nm

  • Kim, Hong-Lae;Yoo, Hee-Soo;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권2호
    • /
    • pp.71-75
    • /
    • 1981
  • Vacuum ultraviolet photolysis of ethyl bromide was studied at 104.8-106.7 nm (11.4-11.6 eV) in the pressure range of 0.2-18.6 torr at $25^{\circ}$ using an argon resonance lamp with and without additives, i.e., NO and He. Since the ionization potential of $CH_3CH_2Br$ is lower than the photon energy, the competitive processes between the photoionization and the photodecomposition were also investigated. The observations indicated that 50% of absorbed light leads to the former process and the rest to the latter one. In the absence of NO the principal reaction products for the latter process were found to be $CH_4, C_2H_2, C_2H_4, C_2H_6, and C_3H_8$. The product quantum yields of these reaction products showed two strikingly different phenomena with an increase in reactant pressure. The major products, $C_2H_4$ and $C_2H_6$, showed positive effects with pressure whereas the effects on minor products were negative in both cases, i.e., He and reactant pressures. Addition of NO completely suppresses the formation of all products except $C_2H_4$ and reduces the $C_2H_4$ quantum yield. These observations are interpreted in view of existence of two different electronically excited states. The initial formation of short-lived Rydberg transition state undergoes HBr molecular elimination and this state can across over by collisional induction to a second excited state which decomposes exclusively by carbon-bromine bond fission. The estimated lifetime of the initial excited state was ${\sim}4{\times}10^{-10}$ sec. The extinction coefficient for $CH_3CH_2Br$ at 104.8-106.7 nm and $25{\circ}$ was determined to be ${varepsilon} = (1/PL)ln(I_0/I_t) = 2061{\pm}160atm^{-1}cm6{-1}$ with 95% confidence level.

$CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향 (The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames)

  • 이기용
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Kayesh, Md. Emrul;Matsuishi, Kiyoto;Chowdhury, Towhid H.;Kaneko, Ryuji;Noda, Takeshi;Islam, Ashraful
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.712-717
    • /
    • 2018
  • In this letter, we have introduced copper chloride ($CuCl_2$) as an additive in the $CH_3NH_3PbI_3$ precursor solution to improve the surface morphology and crystallinity of $CH_3NH_3PbI_3$ films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% $CuCl_2$ additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by $CuCl_2$ (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine $CH_3NH_3PbI_3$.