Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.7.2051

Theoretical Calculations of Infrared Bands of CH3+ and CH5+  

Matin, Mohammad A. (Department of Nanomaterials Engineering, Pusan National University)
Jang, Joonkyung (Department of Nanomaterials Engineering, Pusan National University)
Park, Seung Min (Department of Chemistry and Research Center for New Nano Bio Fusion Technology, Kyung Hee University)
Publication Information
Abstract
Existing theoretical calculations predict that infrared spectra of the two most fundamental reactive carbo-ions, methyl cation $CH{_3}^+$ with $D_{3h}$ symmetry and protonated methyl cation $CH{_5}^+$ with $C_s(I)$, $C_s(II)$, and $C_{2v}$ symmetries, appear together in the 7-${\mu}m$ region corresponding to the C-H bending modes. Vibrational band profiles of $CH{_3}^+$ and $CH{_5}^+$ have been compared by ab initio calculation methods that use the basis sets of MP2/aug-cc-pVTZ and CCSD(T)/cc-pVTZ. Our results indicate that the bands of rotation-vibration transitions of $CH{_3}^+$ and $CH{_5}^+$ should overlap not only in the 3-${\mu}m$ region corresponding to the C-H stretching modes but also in the 7-${\mu}m$ region corresponding to the C-H bending modes. Five band intensities of $CH{_5}^+$ among fifteen vibrational transitions between 6 and 8 ${\mu}m$ region are stronger than those of the ${\nu}_2$ and ${\nu}_4$ bands in $CH{_3}^+$. Ultimate near degeneracy of the two bending vibrations ${\nu}_2$ and ${\nu}_4$ of $CH{_3}^+$along with the stronger intensities of $CH{_5}^+$ in the three hydrogen scrambling structures may cause extreme complications in the analysis of the high-resolution carbo-ion spectra in the 7-${\mu}m$ region.
Keywords
Ab initio calculations; Vibrational frequencies; Infrared spectra; $CH{_3}^+$; $CH{_5}^+$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Herbst, E.; Klemperer, W. Astrophys. J. 1973, 185, 505.   DOI
2 Geballe, T. R.; Oka, T. Nature 1996, 384, 334.   DOI   ScienceOn
3 Smith, D. Phil. Trans. R. Soc. Lond., A 1987, 323, 269.   DOI
4 Rosslein, M.; Gabrys, C. M.; Jagod, M.-F.; Oka, T. J. Mol. Spectrosc. 1992, 153, 738.   DOI   ScienceOn
5 Crofton, M. W.; Jagod, M.-F.; Rehfuss, B. D.; Kreiner, W. A.; Oka, T. J. Chem. Phys. 1988, 88, 666.   DOI
6 Jagod, M.-F.; Gabrys, C. M.; Rösslein, M.; Uy, D.; Oka, T. Can. J. Phys. 1994, 72, 1192.   DOI   ScienceOn
7 White, E. T.; Tang, J.; Oka, T. Science 1999, 284, 135.   DOI   ScienceOn
8 Asvany, O.; Kumar, P.; Redlich, P. B.; Hegemann, I.; Schlemmer, S.; Marx, D. Science 2005, 309, 1219.   DOI   ScienceOn
9 Huang, X.; McCoy, A. B.; Bowman, J. M.; Johnson, L. M.; Savage, C.; Dong, F.; Nesbitt, D. J. Science 2006, 311, 60.   DOI   ScienceOn
10 Herzberg, G.; Shoosmith, J. Can. J. Phys. 1956, 34, 523.   DOI
11 Dyke, J.; Jonathan, N.; Lee, E.; Morris, A. J. Chem. Soc. Faraday Trans. II 1976, 72, 1385.   DOI
12 Liu, X.; Gross, R. L.; Suits, A. G. Science 2001, 294, 2527.   DOI   ScienceOn
13 Yua, H.-G.; Sears, T. J. J. Chem. Phys. 2002, 117, 666.   DOI   ScienceOn
14 Cunha de Miranda, B. K.; Alcaraz, C.; Elhanine, M.; Noller, B.; Hemberger, P.; Fischer, I.; Garcia, G. A.; Soldi-Lose, H.; Gans, B.; Mendes, L. A.; Boye-Peronne, S.; Douin, S.; Zabka, J.; Botschwina, P. J. Phys. Chem. A 2010, 114, 4818.   DOI   ScienceOn
15 Hinkle, C. E.; McCoy, A. B. J. Phys. Chem. A 2012, 116, 4687.   DOI   ScienceOn
16 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision B.02; Gaussian, Inc.: Wallingford, CT, 2010.
17 Brown, A.; McCoy, A. B.; Braams, B. J.; Jin, Z.; Bowman, J. M. J. Chem. Phys. 2004, 121, 4105.   DOI   ScienceOn
18 Jin, Z.; Braams, B. J.; Bowman, J. M. J. Phys. Chem. A 2006, 110, 1569.   DOI   ScienceOn
19 Olkhov, R. V.; Nizkorodov, S. A.; Dopfer, O. J. Chem. Phys. 1999, 110, 9527.   DOI   ScienceOn