DOI QR코드

DOI QR Code

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Kayesh, Md. Emrul (Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS)) ;
  • Matsuishi, Kiyoto (Faculty of Pure and Applied Sciences, University of Tsukuba) ;
  • Chowdhury, Towhid H. (Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS)) ;
  • Kaneko, Ryuji (Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS)) ;
  • Noda, Takeshi (Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS)) ;
  • Islam, Ashraful (Photovoltaic Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS))
  • Received : 2018.03.16
  • Accepted : 2018.05.27
  • Published : 2018.11.10

Abstract

In this letter, we have introduced copper chloride ($CuCl_2$) as an additive in the $CH_3NH_3PbI_3$ precursor solution to improve the surface morphology and crystallinity of $CH_3NH_3PbI_3$ films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% $CuCl_2$ additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by $CuCl_2$ (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine $CH_3NH_3PbI_3$.

Keywords

Acknowledgement

Supported by : JSPS

References

  1. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E. : Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012) https://doi.org/10.1038/srep00591
  2. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J. : Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341-344 (2013) https://doi.org/10.1126/science.1243982
  3. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M. : High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584-1589 (2014) https://doi.org/10.1002/adma.201305172
  4. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I. : Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764-1769 (2013) https://doi.org/10.1021/nl400349b
  5. Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K. : Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013) https://doi.org/10.1038/nphoton.2013.80
  6. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. : Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009) https://doi.org/10.1021/ja809598r
  7. Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A. : Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206-209 (2016) https://doi.org/10.1126/science.aah5557
  8. Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W., Han, L. : Retarding the crystallization of $PbI_2$ for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934-2938 (2014) https://doi.org/10.1039/C4EE01624F
  9. Xie, F., Chen, C.-C., Wu, Y., Li, X., Cai, M., Liu, X., Yang, X., Han, L. : Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10, 1942-1949 (2017) https://doi.org/10.1039/C7EE01675A
  10. Watthage, S.C., Song, Z., Shrestha, N., Phillips, A.B., Liyanage, G.K., Roland, P.J., Ellingson, R.J., Heben, M.J. : Enhanced grain size, photoluminescence, and photoconversion efficiency with cadmium addition during the two-step growth of $CH_3NH_3PbI_3$. ACS Appl. Mater. Interfaces. 9, 2334-2341 (2017) https://doi.org/10.1021/acsami.6b12627
  11. Zheng, H., Liu, G., Zhu, L., Ye, J., Zhang, X., Alsaedi, A., Hayat, T., Pan, X., Dai, S. : Enhanced performance and stability of perovskite solar cells using $NH_4I$ interfacial modifier. ACS Appl. Mater. Interfaces. 9, 41006-41013 (2017) https://doi.org/10.1021/acsami.7b12721
  12. Hou, X., Hu, Y., Liu, H., Mei, A., Li, X., Duan, M., Zhang, G., Rong, Y., Han, H. : Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A 5, 73-78 (2017) https://doi.org/10.1039/C6TA08418D
  13. Hsieh, C.-M., Yu, Y.-L., Chen, C.-P., Chuang, S.-C. : Effects of the additives n-propylammonium or n-butylammonium iodide on the performance of perovskite solar cells. RSC Adv. 7, 55986-55992 (2017) https://doi.org/10.1039/C7RA11286F
  14. Zhao, Y., Zhu, K. : $CH_3NH_3Cl$-assisted one-step solution growth of $CH_3NH_3PbI_3$: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412-9418 (2014) https://doi.org/10.1021/jp502696w
  15. Liang, P.W., Liao, C.Y., Chueh, C.C., Zuo, F., Williams, S.T., Xin, X.K., Lin, J., Jen, A.K.Y. : Additive enhanced crystallization of solution-processed perovskite for highly efficient planarheterojunction solar cells. Adv. Mater. 26, 3748-3754 (2014) https://doi.org/10.1002/adma.201400231
  16. Yang, Y., Song, J., Zhao, Y., Zhu, L., Gu, X., Gu, Y., Che, M., Qiang, Y. : Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. J Alloys Compd. 684, 84-90 (2016) https://doi.org/10.1016/j.jallcom.2016.05.154
  17. Sun, C., Guo, Y., Fang, B., Yang, J., Qin, B., Duan, H., Chen, Y., Li, H., Liu, H. : Enhanced photovoltaic performance of perovskite solar cells using polymer P (VDF-TrFE) as a processed additive. J. Phys. Chem. C 120, 12980-12988 (2016) https://doi.org/10.1021/acs.jpcc.6b05255
  18. Seo, J.Y., Matsui, T., Luo, J., Correa-Baena, J.P., Giordano, F., Saliba, M., Schenk, K., Ummadisingu, A., Domanski, K., Hadadian, M. : Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv. Energy Mater. 6, 1600767 (2016) https://doi.org/10.1002/aenm.201600767
  19. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G. : Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696-8699 (2015) https://doi.org/10.1021/jacs.5b04930
  20. Frolova, L.A., Anokhin, D.V., Gerasimov, K.L., Dremova, N.N., Troshin, P.A. : Exploring the effects of the $Pb^{2+}$ substitution in MAPbI 3 on the photovoltaic performance of the hybrid Perovskite solar cells. J. Phys. Chem. Lett. 7, 4353-4357 (2016) https://doi.org/10.1021/acs.jpclett.6b02122
  21. Williams, S.T., Zuo, F., Chueh, C.-C., Liao, C.-Y., Liang, P.-W., Jen, A.K.-Y. : Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640-10654 (2014) https://doi.org/10.1021/nn5041922
  22. Shi, Y., Wang, X., Zhang, H., Li, B., Lu, H., Ma, T., Hao, C. : Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. J. Mater. Chem. A 3, 22191-22198 (2015) https://doi.org/10.1039/C5TA05988G
  23. Song, Z., Watthage, S.C., Phillips, A.B., Tompkins, B.L., Ellingson, R.J., Heben, M.J. : Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. 27, 4612-4619 (2015) https://doi.org/10.1021/acs.chemmater.5b01017
  24. Dharani, S., Mulmudi, H.K., Yantara, N., Trang, P.T.T., Park, N.G., Graetzel, M., Mhaisalkar, S., Mathews, N., Boix, P.P. : High efficiency electrospun $TiO_2$ nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 6, 1675-1679 (2014) https://doi.org/10.1039/C3NR04857H
  25. Gharibzadeh, S., Nejand, B.A., Moshaii, A., Mohammadian, N., Alizadeh, A.H., Mohammadpour, R., Ahmadi, V., Alizadeh, A. : Two-step physical deposition of a compact CuI Hole-Transport layer and the formation of an interfacial species in perovskite solar cells. Chemsuschem 9, 1929-1937 (2016) https://doi.org/10.1002/cssc.201600132
  26. Rajamanickam, N., Kumari, S., Vendra, V.K., Lavery, B.W., Spurgeon, J., Druffel, T., Sunkara, M.K. : Stable and durable $CH_3NH_3PbI_3$ perovskite solar cells at ambient conditions. Nanotechnology 27, 235404 (2016) https://doi.org/10.1088/0957-4484/27/23/235404
  27. Zhou, Z., Li, X., Cai, M., Xie, F., Wu, Y., Lan, Z., Yang, X., Qiang, Y., Islam, A., Han, L. : Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv. Energy Mater. 7, 1700763 (2017) https://doi.org/10.1002/aenm.201700763
  28. Patterson, A. : The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939) https://doi.org/10.1103/PhysRev.56.978
  29. Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J. : Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503-6509 (2014) https://doi.org/10.1002/adma.201401685
  30. Chang, C.-Y., Lee, K.-T., Huang, W.-K., Siao, H.-Y., Chang, Y.-C. : High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 27, 5122-5130 (2015) https://doi.org/10.1021/acs.chemmater.5b01933

Cited by

  1. Microstructural Evolution of Hybrid Perovskites Promoted by Chlorine and its Impact on the Performance of Solar Cell vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-41328-5
  2. All-Inorganic Perovskite CsPbI2Br Through Co-evaporation for Planar Heterojunction Solar Cells vol.15, pp.1, 2019, https://doi.org/10.1007/s13391-018-0095-1
  3. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells vol.15, pp.5, 2018, https://doi.org/10.1007/s13391-019-00163-6
  4. Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr3 Films for Efficient Light-Emitting Diodes vol.12, pp.1, 2018, https://doi.org/10.1021/acsami.9b20094
  5. Confined Growth of High-quality Single-Crystal MAPbBr3 by Inverse Temperature Crystallization for Photovoltaic Applications vol.17, pp.4, 2018, https://doi.org/10.1007/s13391-021-00288-7
  6. The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells vol.11, pp.7, 2021, https://doi.org/10.3390/cryst11070814