• Title/Summary/Keyword: $CA_2$

Search Result 14,427, Processing Time 0.043 seconds

Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt (CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가)

  • Hwang, Dong Wook;Lee, Jong Hyeon;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calcium-based alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.

[ $Ca^{2+}$ ]-dependent Long-term Inactivation of Cardiac $Na^+/Ca^{2+}$ Exchanger

  • Lee, Jee-Eun;Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.183-188
    • /
    • 2007
  • Using BHK cells with stable expression of cardiac $Na^+/Ca^{2+}$ exchanger(BHK-NCX1), reverse mode(i.e. $Ca^{2+}$ influx mode) of NCX1 current was recorded by whole-cell patch clamp. Repeated stimulation of reverse NCX1 produced a cytosolic $Ca^{2+}$-dependent long-term inactivation of the exchanger activity. The degrees of inactivation correlated with NCX1 densities of the cells and were attenuated by reduced $Ca^{2+}$ influx via the reverse exchanger. The inactivation of NCX1 was attenuated by(i) inhibition of $Ca^{2+}$ influx with reduced extracellular $Ca^{2+}$, (ii) treatment with NCX1 blocker($Na^{2+}$), and (iii) increase of cytoplasmic $Ca^{2+}$ buffer(EGTA). In BHK-NCX1 cells transiently expressing TRPV1 channels, $Ca^{2+}$ influx elicited by capsaicin produced a marked inactivation of NCX1. We suggest that cytoplasmic $Ca^{2+}$ has a dual effect on NCX1 activities, and that allosteric $Ca^{2+}$ activation of NCX1 can be opposed by the $Ca^{2+}$-dependent long-term inactivation in intact cells.

Analysis of Vasopressin-Induced $Ca^{2+}$ Increase in Rat Hepatocytes

  • Kim, Hyun-Sook;Fumikazu-Okajima;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • To analyze vasopressin-induced $Ca^{2+}$ increase in liver cells, rat hepatocytes were isolated and attached to collagen-coated cover slips. Using fura-2, a $Ca^{2+}$-sensing dye, changes in intracellular $Ca^{2+}$ concentration by vasopressin were monitored. Results in this communication suggested that vasopressin-induced $Ca^{2+}$ increase were composed of both $Ca^{2+}$ release from internal $Ca^{2+}$ stores and influx from the plasma membrane. The $Ca^{2+}$ influx consisted of two distinguishable components. One was dependent on the presence of vasopressin and the other was not. SK&F96365 blocked vasopressin-induced $Ca^{2+}$ influx in a dose-dependent manner. Vasopressin-induced $Ca^{2+}$ release from internal stores diminished in a primary culture of hepatocytes according to the culture time. However, changes in vasopressin-induced $Ca^{2+}$ influx across the plasma membrane differed from changes in the $Ca^{2+}$ release from internal stores, suggesting two separate signalings from receptor activation to internal stores and to the plasma membrane.

Two Anhydrous Zeolite X Crystal Structures, $Ca_{31}Rb_{30}Si_{100}Al_{92}O_{384}$ and $Ca_{28}Rb_{36}Si_{100}Al_{92}O_{384}$

  • 장세복;김미숙;한영욱;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.631-637
    • /
    • 1996
  • The structures of fully dehydrated Ca2+- and Rb+-exchanged zeolite X, Ca31Rb30Si100Al92O384(Ca31Rb30-X; a=25.009(1) Å) and Ca28Rb36Si100Al92O384(Ca28Rb36-X; a=24.977(1) Å), have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd&bar{3} at 21(1) ℃. Their structures were refined to the final error indices R1=0.048 and R2=0.041 with 236 reflections for Ca31Rb30-X, and R1=0.052 and R2=0.043 with 313 reflections for Ca28Rb36-X; I>3σ(I). In both structures, Ca2+ and Rb+ ions are located at six different crystallographic sites. In dehydrated Ca31Rb30-X, sixteen Ca2+ ions fill site I, at the centers of the double 6-rings (Ca-O=2.43(1) Å and O-Ca-O=93.3(3)°). Another fifteen Ca2+ ions occupy site II (Ca-O=2.29(1) Å, O-Ca-O=119.5(5)°) and fifteen Rb+ ions occupy site II opposite single six-rings in the supercage; each is 1.60 Å from the plane of three oxygens (Rb-O=2.77(1) Å and O-Rb-O=91.1(4)°). About two Rb+ ions are found at site II', 1.99 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=82.8(4)°). The remaining thirteen Rb+ ions are statistically distributed over site III, a 48-fold equipoint in the supercages on twofold axes (Rb-O=3.05(1) Å and Rb-O=3.38(1) Å). In dehydrated Ca28Rb36-X, sixteen Ca2+ ions fill site I (Ca-O=2.41(1) Å and O-Ca-O=93.6(3)°) and twelve Ca2+ ions occupy site II (Ca-O=2.31(1) Å, O-Ca-O=119.7(4)°). Sixteen Rb+ ions occupy site II; each is 1.60 Å from the plane of three oxygens (Rb-O=2.81(1) Å and O-Rb-O=90.6(3)°) and four Rb+ ions occupy site II'; each is 1.88 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=83.8(2)°). The remaining sixteen Rb+ ions are found at III site in the supercage (Rb-O=2.97(1) Å and Rb-O=3.39(1) Å). It appears that Ca2+ ions prefer sites I and II in that order, and that Rb+ ions occupy the remaining sites. Rb+ ions are too large to be stable at site I, when they are competing with other smaller cations like Ca2+ ions.

$Ca^{2+}$-ATPase Role in the Capacitation and Acrosome Reaction Assessed by a Chlortetracycline Fluorescence Assay (Chlortetracycline Fluoresence 분석을 통한 수정능 획득 과정에서의 $Ca^{2+}$-ATPase 역할)

  • Park, Kyoung-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 1998
  • It has been reported that the $Ca^{2+}$-ATPase and the $Ca^{2+}-Na^+$ exchanger play an important role for the regulation of intracellular $Ca^{2+}$ in somatic cells, the $Ca^{2+}$-ATPase located in the plasma membrane helps the $Ca^{2+}$ concentration in maintain low $[Ca^{2+}]_i$. Roldan & Fleming reported that the spermatozoan $Ca^{2+}$-ATPase plays an important role in the capacitation and acrosome reaction. We used to assess $Ca^{2+}$ changes by chlortetracycline (CTC) patterns in the capacitation and acrosome reaction of human and hamster spermatozoa. In the present study applying quercetin which has been known as an ATPase antagonist, the enzymatic effect of $Ca^{2+}$-ATPase on capacitation and acrosome reaction was found to be remarkable: a significant increase of the transformation from the original type to the B type and the AR type of spermatozoa. This finding suggests that $Ca^{2+}$-ATPase play an important role in the efflux and the influx of the $Ca^{2+}$ which have been known to be an essential factor for the capacitation and acrosome reaction, and that the inhibitory action of the $Ca^{2+}$-ATPase might be a prerequsit step toward the capacitation and acrosome reaction. In conclusion, this study suggest the considerable evidence as follows: the increment of the intracellular $Ca^{2+}$ concentration occurred by controlling the slope of $Ca^{2+}$ concentration through $Ca^{2+}$-ATPase activites in both the intracellular and extracellulr fluid may be important procedures for the capacitation and the acrosome reaction, and finally for fertilization of the sperm and ovum.

  • PDF

Hydrogen peroxide inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in mouse parotid acinar cells

  • Kim, Min Jae;Choi, Kyung Jin;Yoon, Mi Na;Oh, Sang Hwan;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.215-223
    • /
    • 2018
  • Intracellular $Ca^{2+}$ mobilization is closely linked with the initiation of salivary secretion in parotid acinar cells. Reactive oxygen species (ROS) are known to be related to a variety of oxidative stress-induced cellular disorders and believed to be involved in salivary impairments. In this study, we investigated the underlying mechanism of hydrogen peroxide ($H_2O_2$) on cytosolic $Ca^{2+}$ accumulation in mouse parotid acinar cells. Intracellular $Ca^{2+}$ levels were slowly elevated when $1mM\;H_2O_2$ was perfused in the presence of normal extracellular $Ca^{2+}$. In a $Ca^{2+}-free$ medium, $1mM\;H_2O_2$ still enhanced the intracellular $Ca^{2+}$ level. $Ca^{2+}$ entry tested using manganese quenching technique was not affected by perfusion of $1mM\;H_2O_2$. On the other hand, $10mM\;H_2O_2$ induced more rapid $Ca^{2+}$ accumulation and facilitated $Ca^{2+}$ entry from extracellular fluid. $Ca^{2+}$ refill into intracellular $Ca^{2+}$ store and inositol 1,4,5-trisphosphate ($1{\mu}M$)-induced $Ca^{2+}$ release from $Ca^{2+}$ store was not affected by $1mM\;H_2O_2$ in permeabilized cells. $Ca^{2+}$ efflux through plasma membrane $Ca^{2+}-ATPase$ (PMCA) was markedly blocked by $1mM\;H_2O_2$ in thapsigargin-treated intact acinar cells. Antioxidants, either catalase or dithiothreitol, completely protected $H_2O_2-induced$ $Ca^{2+}$ accumulation through PMCA inactivation. From the above results, we suggest that excessive production of $H_2O_2$ under pathological conditions may lead to cytosolic $Ca^{2+}$ accumulation and that the primary mechanism of $H_2O_2-induced$ $Ca^{2+}$ accumulation is likely to inhibit $Ca^{2+}$ efflux through PMCA rather than mobilize $Ca^{2+}$ ions from extracellular medium or intracellular stores in mouse parotid acinar cells.

Acetylcholine Induces Hyperpolarization Mediated by Activation of $K_{(ca)}$ Channels in Cultured Chick Myoblasts

  • Lee, Do-Yun;Han, Jae-Hee;Park, Jae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.

Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes

  • Lee Jun-Ho;Jeong Sang-Min;Lee Byung-Hwan;Kim Jong-Hoon;Ko Sung-Ryong;Kim Seung-Hwan;Lee Sang-Mok;Nah Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.413-420
    • /
    • 2005
  • We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$-activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$. The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$. Intraoocyte injection of CaM inhibited $Ca^{2+}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. $Ca^{2+}$/CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$-activated $Cl^{-}$ current enhancement via $Ca^{2+}$-independent manner.

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.233-239
    • /
    • 2017
  • Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.

Tumor Markers for Diagnosis, Monitoring of Recurrence and Prognosis in Patients with Upper Gastrointestinal Tract Cancer

  • Jing, Jie-Xian;Wang, Yan;Xu, Xiao-Qin;Sun, Ting;Tian, Bao-Guo;Du, Li-Li;Zhao, Xian-Wen;Han, Cun-Zhi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10267-10272
    • /
    • 2015
  • To evaluate the value of combined detection of serum CEA, CA19-9, CA24-2, AFP, CA72-4, SCC, TPA and TPS for the clinical diagnosis of upper gastrointestinal tract (GIT) cancer and to analyze the efficacy of these tumor markers (TMs) in evaluating curative effects and prognosis. A total of 573 patients with upper GIT cancer between January 2004 and December 2007 were enrolled in this study. Serum levels of CEA, CA19-9, CA24-2, AFP, CA72-4, SCC, TPA and TPS were examined preoperatively and every 3 months postoperatively by ELISA. The sensitivity of CEA, CA19-9, CA24-2, AFP, CA72-4, SCC, TPA and TPS were 26.8%, 36.2%, 42.9%, 2.84%, 25.4%, 34.6%, 34.2% and 30.9%, respectively. The combined detection of CEA+CA199+CA242+CA724 had higher sensitivity and specificity in gastric cancer (GC) and cardiac cancer, while CEA+CA199+CA242+SCC was the best combination of diagnosis for esophageal cancer (EC). Elevation of preoperative CEA, CA19-9 and CA24-2, SCC and CA72-4 was significantly associated with pathological types (p<0.05) and TNM staging (p<0.05). Correlation analysis showed that CA24-2 was significantly correlated with CA19-9 (r=0.810, p<0.001). The levels of CEA, CA19-9, CA24-2, CA72-4 and SCC decreased obviously 3 months after operations. When metastasis and recurrence occurred, the levels of TMs significantly increased. On multivariate analysis, high preoperative CA72-4, CA24-2 and SCC served as prognostic factors for cardiac carcinoma, GC and EC, respectively. combined detection of CEA+CA199+CA242+SCC proved to be the most economic and practical strategy in diagnosis of EC; CEA+CA199+CA242+CA724 proved to be a better evaluation indicator for cardiac cancer and GC. CEA and CA19-9, CA24-2, CA72-4 and SCC, examined postoperatively during follow-up, were useful to find early tumor recurrence and metastasis, and evaluate prognosis. AFP, TPA and TPS have no significant value in diagnosis of patients with upper GIT cancer.