Browse > Article
http://dx.doi.org/10.4196/kjpp.2018.22.2.215

Hydrogen peroxide inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in mouse parotid acinar cells  

Kim, Min Jae (Department of Physiology, College of Medicine, Konyang University)
Choi, Kyung Jin (Department of Physiology, College of Medicine, Konyang University)
Yoon, Mi Na (Department of Physiology, College of Medicine, Konyang University)
Oh, Sang Hwan (Department of Dental Hygiene, College of Medical Science, Konyang University)
Kim, Dong Kwan (Department of Physiology, College of Medicine, Konyang University)
Kim, Se Hoon (Department of Physiology, College of Medicine, Konyang University)
Park, Hyung Seo (Department of Physiology, College of Medicine, Konyang University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.22, no.2, 2018 , pp. 215-223 More about this Journal
Abstract
Intracellular $Ca^{2+}$ mobilization is closely linked with the initiation of salivary secretion in parotid acinar cells. Reactive oxygen species (ROS) are known to be related to a variety of oxidative stress-induced cellular disorders and believed to be involved in salivary impairments. In this study, we investigated the underlying mechanism of hydrogen peroxide ($H_2O_2$) on cytosolic $Ca^{2+}$ accumulation in mouse parotid acinar cells. Intracellular $Ca^{2+}$ levels were slowly elevated when $1mM\;H_2O_2$ was perfused in the presence of normal extracellular $Ca^{2+}$. In a $Ca^{2+}-free$ medium, $1mM\;H_2O_2$ still enhanced the intracellular $Ca^{2+}$ level. $Ca^{2+}$ entry tested using manganese quenching technique was not affected by perfusion of $1mM\;H_2O_2$. On the other hand, $10mM\;H_2O_2$ induced more rapid $Ca^{2+}$ accumulation and facilitated $Ca^{2+}$ entry from extracellular fluid. $Ca^{2+}$ refill into intracellular $Ca^{2+}$ store and inositol 1,4,5-trisphosphate ($1{\mu}M$)-induced $Ca^{2+}$ release from $Ca^{2+}$ store was not affected by $1mM\;H_2O_2$ in permeabilized cells. $Ca^{2+}$ efflux through plasma membrane $Ca^{2+}-ATPase$ (PMCA) was markedly blocked by $1mM\;H_2O_2$ in thapsigargin-treated intact acinar cells. Antioxidants, either catalase or dithiothreitol, completely protected $H_2O_2-induced$ $Ca^{2+}$ accumulation through PMCA inactivation. From the above results, we suggest that excessive production of $H_2O_2$ under pathological conditions may lead to cytosolic $Ca^{2+}$ accumulation and that the primary mechanism of $H_2O_2-induced$ $Ca^{2+}$ accumulation is likely to inhibit $Ca^{2+}$ efflux through PMCA rather than mobilize $Ca^{2+}$ ions from extracellular medium or intracellular stores in mouse parotid acinar cells.
Keywords
Calcium; Hydrogen peroxide; Parotid acinar cells; Plasma membrane calcium ATPase; Reactive oxygen species;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Giambelluca MS, Gende OA. Hydrogen peroxide activates calcium influx in human neutrophils. Mol Cell Biochem. 2008;309:151-156.   DOI
2 Liu X, Cotrim A, Teos L, Zheng C, Swaim W, Mitchell J, Mori Y, Ambudkar I. Loss of TRPM2 function protects against irradiationinduced salivary gland dysfunction. Nat Commun. 2013;4:1515.   DOI
3 Kozai D, Ogawa N, Mori Y. Redox regulation of transient receptor potential channels. Antioxid Redox Signal. 2014;21:971-986.   DOI
4 Santiago E, Climent B, Munoz M, Garcia-Sacristan A, Rivera L, Prieto D. Hydrogen peroxide activates store-operated $Ca^{2+}$ entry in coronary arteries. Br J Pharmacol. 2015;172:5318-5332.   DOI
5 Zaidi A, Barron L, Sharov VS, Schoneich C, Michaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane $Ca^{2+}$-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry. 2003;42:12001-12010.   DOI
6 Bruce JI, Elliott AC. Oxidant-impaired intracellular $Ca^{2+}$ signaling in pancreatic acinar cells: role of the plasma membrane $Ca^{2+}$-ATPase. Am J Physiol Cell Physiol. 2007;293:C938-950.
7 Yoon MN, Kim DK, Kim SH, Park HS. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells. Korean J Physiol Pharmacol. 2017;21:233-239.   DOI
8 Park HS, Betzenhauser MJ, Zhang Y, Yule DI. Regulation of $Ca^{2+}$ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol. 2012;302:G97-104.   DOI
9 Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-aminoethoxydiphenyl borate (2-APB) have different ability to inhibit intracellular calcium mobilization in pancreatic acinar cell. Korean J Physiol Pharmacol. 2010;14:105-111.   DOI
10 Gallacher DV, Petersen OH. Stimulus-secretion coupling in mammalian salivary glands. Int Rev Physiol. 1983;28:1-52.
11 Yule DI, Straub SV, Bruce JI. Modulation of $Ca^{2+}$ oscillations by phosphorylation of Ins(1,4,5)$P_3$ receptors. Biochem Soc Trans. 2003; 31:954-957.   DOI
12 Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005;67:445-469.   DOI
13 Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529.
14 Won JH, Cottrell WJ, Foster TH, Yule DI. $Ca^{2+}$ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1166-1177.   DOI
15 Baggaley EM, Elliott AC, Bruce JI. Oxidant-induced inhibition of the plasma membrane $Ca^{2+}$-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol. 2008;295:C1247-1260.   DOI
16 Clapham DE. Calcium signaling. Cell. 2007;131:1047-1058.   DOI
17 Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium. 2014;55:282-289.   DOI
18 Pariente JA, Camello C, Camello PJ, Salido GM. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol. 2001;179:27-35.   DOI
19 Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A. Plasma membrane $Ca^{2+}$ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci. 2007;1099:226-236.   DOI
20 Bellomo G, Mirabelli F, Richelmi P, Orrenius S. Critical role of sulfhydryl group(s) in ATP-dependent $Ca^{2+}$ sequestration by the plasma membrane fraction from rat liver. FEBS Lett. 1983;163:136-139.   DOI
21 Zaidi A, Barron L, Sharov VS, Schoneich C, Michaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane $Ca^{2+}$-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry. 2003;42:12001-12010.   DOI
22 Pengpanichpakdee N, Thadtapong T, Auparakkitanon S, Wilairat P. Plasma membrane $Ca^{2+}$-ATPase sulfhydryl modifications: implication for oxidized red cell. Southeast Asian J Trop Med Public Health. 2012;43:1252-1257.
23 Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001;81:21-50.   DOI
24 Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JI. Differential regulation of the apical plasma membrane $Ca^{2+}$-ATPase by protein kinase A in parotid acinar cells. J Biol Chem. 2007;282:37678-37693.   DOI
25 Grover AK, Samson SE, Misquitta CM. Sarco(endo)plasmic reticulum $Ca^{2+}$ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. Am J Physiol. 1997;273:C420-425.   DOI
26 Barnes KA, Samson SE, Grover AK. Sarco/endoplasmic reticulum $Ca^{2+}$-pump isoform SERCA3a is more resistant to superoxide damage than SERCA2b. Mol Cell Biochem. 2000;203:17-21.   DOI
27 Yin D, Kuczera K, Squier TC. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by $H_2O_2$ modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol. 2000;13:103-110.   DOI
28 Belan PV, Gerasimenko OV, Tepikin AV, Petersen OH. Localization of $Ca^{2+}$ extrusion sites in pancreatic acinar cells. J Biol Chem. 1996;271:7615-7619.   DOI
29 Petersen OH. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992;448:1-51.   DOI
30 Ambudkar IS. Calcium signalling in salivary gland physiology and dysfunction. J Physiol. 2016;594:2813-2824.   DOI
31 Fox PC. Acquired salivary dysfunction. Drugs and radiation. Ann N Y Acad Sci. 1998;842:132-137.   DOI
32 Abdollahi M, Fooladian F, Emami B, Zafari K, Bahreini-Moghadam A. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol. 2003;22:587-592.   DOI
33 Acauan MD, Figueiredo MA, Cherubini K, Gomes AP, Salum FG. Radiotherapy-induced salivary dysfunction: Structural changes, pathogenetic mechanisms and therapies. Arch Oral Biol. 2015;60: 1802-1810.   DOI
34 Yamada T, Ryo K, Tai Y, Tamaki Y, Inoue H, Mishima K, Tsubota K, Saito I. Evaluation of therapeutic effects of astaxanthin on impairments in salivary secretion. J Clin Biochem Nutr. 2010;47:130-137.   DOI
35 Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol. 1998;275:C1-24.   DOI
36 Lee MG, Xu X, Zeng W, Diaz J, Kuo TH, Wuytack F, Racymaekers L, Muallem S. Polarized expression of $Ca^{2+}$ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of $[Ca^{2+}]_i$ waves. J Biol Chem. 1997;272:15771-15776.   DOI
37 Abedi SM, Yarmand F, Motallebnejad M, Seyedmajidi M, Moslemi D, Ashrafpour M, Bijani A, Moghadamnia A, Mardanshahi A, Hosseinimehr SJ. Vitamin E protects salivary glands dysfunction induced by ionizing radiation in rats. Arch Oral Biol. 2015;60:1403-1409.   DOI
38 Pagano G, Castello G, Pallardo FV. Sjogren's syndrome-associated oxidative stress and mitochondrial dysfunction: prospects for chemoprevention trials. Free Radic Res. 2013;47:71-73.   DOI
39 Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu Y, Lichtenstein A. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic Biol Med. 1997;22:73-83.   DOI
40 Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75:199-212.   DOI
41 Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016;60:108-114.   DOI
42 Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139-162.   DOI
43 Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95.   DOI
44 Roveri A, Coassin M, Maiorino M, Zamburlini A, van Amsterdam FT, Ratti E, Ursini F. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys. 1992;297: 265-270.   DOI
45 Gen W, Tani M, Takeshita J, Ebihara Y, Tamaki K. Mechanisms of $Ca^{2+}$ overload induced by extracellular $H_2O_2$ in quiescent isolated rat cardiomyocytes. Basic Res Cardiol. 2001;96:623-629.   DOI
46 Sun L, Yau HY, Lau OC, Huang Y, Yao X. Effect of hydrogen peroxide and superoxide anions on cytosolic $Ca^{2+}$: comparison of endothelial cells from large-sized and small-sized arteries. PLoS One. 2011;6:e25432.   DOI
47 Ryo K, Yamada H, Nakagawa Y, Tai Y, Obara K, Inoue H, Mishima K, Saito I. Possible involvement of oxidative stress in salivary gland of patients with Sjogren's syndrome. Pathobiology. 2006;73:252-260.   DOI