• Title/Summary/Keyword: $C^{*}$-Integral

Search Result 659, Processing Time 0.028 seconds

Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature (순동의 고온에서의 크리프 균열성장 특성)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Jung, Min-Woo;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

Effect of Structural Geometry and Crack Location on Crack Driving Forces for Cracks in Welds (용접부 균열의 균열진전력에 대한 구조물 형상과 균열 위치의 영향)

  • Oh Chang-Kyun;Kim Jong-Sung;Jin Tae-Eun;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.931-940
    • /
    • 2006
  • Defect assessment of a weld zone is important in fitness-for-service evaluation of plant components. Typically a J and $C^*$ estimation method for a defective homogeneous component is extended to a mismatched component, by incorporating the effect due to the strength mismatch between the weld metal and the base material. The key element is a mismatch limit load. For instance, the R6/R5 procedure employs an equivalent material concept, defined by a mismatch limit load. A premise is that if a proper mismatch limit load solution is available, the same concept can be used for any defect location (either a weld centre defect or a heat affected zone (HAZ) defect) and for any material combination (either two-material or multi-material combinations; either similar or dissimilar joints). However, validation is still limited, and thus a more systematic investigation is needed to generalise the suggestion to any geometry, any defect location and any material combination. This paper describes the effect of structural geometry on the $C^*$ integral for defective similar welds, based on systematic elastic-creep 2-D and 3-D finite element (FE) analyses, to attempt to elucidate the questions given above. It is found that the existing 'equivalent material' concept is valid only for limited cases, although it provides conservative estimates of $C^*$ for most of cases. A modification to the existing equivalent material concept is suggested to improve accuracy.

[ $C^{\ast}$ ]-integral Based Life Assessment of High Temperature Pipes ($C^{\ast}$-적분에 기초한 고온배관 수명평가)

  • Lee Hyungyil
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.25-33
    • /
    • 2000
  • In recent years, the subject of remaining life assessment has drawn considerable attention in power plants, where various structural components typically operate at high temperature and pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter $C^{\ast}$-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

  • PDF

A study on fatigue crack growth with loading waveform and analysis method for all loading waveform at elevated temperature in SUS 304 stainless steel (SUS 304강의 하중파형에 따른 고온피로균열전파속도 및 전체하중파형의 평가방법의 연구)

  • 이상록;이학주;허정원;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.122-130
    • /
    • 1992
  • The effect of loading waveform on elevated temperature low-cycle fatigue crack growth behavior in a SUS 304 stainless steel have been investigated under symmetrical trangular (fast-fast), trapezoidal and asymmetrical(fast-slow, slow-fast) waveforms at 650.deg. C. It was found that the crack growth rate in fast-slow loading waveform appeared to be higher a little and the crack growth rate in slow-fast loading waveform much higer than that in fast-fast loading waveform, and difference in crack growth rate between fast-show and slow-fast waveforms nearly didn't appear in the region of da/dN>10/sup -2/ The crack growth rate in the trapezoidal loading waveform with t/sub h/=500sec appeared to be faster than that in slow(500sec)-fast(1sec). In addition, parameter modified J-integral could be considered as useful parameter for fatigue crack growth rate in all waveforms. The result obtained are as follow. da/dN=4.91*10/sup -3/ (.DELTA. J/sub c/)/sup 0.565/.

  • PDF

A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects (구속효과를 고려한 가스배관 결함의 파괴거동해석)

  • Shim, Do-Jun;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter;C.G. du Toit
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.959-965
    • /
    • 2024
  • The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.

INCOMPLETE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS AND ASSOCIATED PROPERTIES

  • Parmar, Rakesh K.;Saxena, Ram K.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.287-304
    • /
    • 2017
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we first introduce incomplete Fox-Wright function. We then define the families of incomplete extended Hurwitz-Lerch Zeta function. We then systematically investigate several interesting properties of these incomplete extended Hurwitz-Lerch Zeta function which include various integral representations, summation formula, fractional derivative formula. We also consider an application to probability distributions and some special cases of our main results.