• Title/Summary/Keyword: $BiVO_4$ single crystal

Search Result 5, Processing Time 0.011 seconds

Crystal Structure of Ca1.29Bi0.14VO4

  • Kim, Myung-Seab;Lah, Myoung-Soo;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.98-102
    • /
    • 2002
  • The structure of a single crystal, grown by a slow cooling a melt of $Ca_{1.29}Bi_{0.14}VO_4$ composition, was analyzed. The crystals belong to the rhombohedral space group R3c and the dimensions of the unit cells are a = 10.848(1)${\AA}$, c = 38.048(6)${\AA}$, V = 3877.6(8)${\AA}^3$ for the pale yellow crystal, and a = 10.857(1), c = 38.063(6)${\AA}$, V = 3885.6(8)${\AA}^3$ for the yellow crystal, respectively. Unit cell dimensions of the crystal were larger than those of the host crystal, $Ca_3(VO_4)_2$, owing to the Bi that replaced Ca in the unit cell. Ca in the unit cell formed six, eight and nine coordinated polyhedra with O atoms and Bi replacing Ca entered the eight or nine coordinated Ca sites with different crystallographic environments in the unit cell. All the V in the unit cell formed four coordinated tetrahedra with O atoms, however V-O bond lengths in the tetrahedra were different from one another.

Crystal Defects and Grain Boundary Properties in ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 Varistor (ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 바리스터 내의 결정결함과 입계특성)

  • Hong, Youn-Woo;Ha, Man-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.276-280
    • /
    • 2019
  • In this study, we investigated the crystal defects and grain boundary properties in a ZZCCC ($ZnO-Zn_2BiVO_6-Co_3O_4-Cr_2O_3-CaCO_3$) varistor, with the liquid-phase sintering aid $Zn_2BiVO_6$ developed by our laboratory. The ZZCCC varistor sintered at $1,200^{\circ}C$ exhibited excellent nonlinear current-voltage characteristics (${\alpha}=63$), with oxygen vacancy ($V_o^*$ ; 0.35 eV) as a main defect, and an apparent activation energy of 1.1 eV with an electrically single grain boundary. Therefore, among the various additives to improve the electrical properties of ZnO varistors, if $Zn_2BiVO_6$ is used as a liquid phase sintering aid, it will be ideal to use Co for the oxygen vacancy and Ca for the electrically single grain boundary. This will allow the good properties of ZnO varistors to be maintained up to high sintering temperatures.

Synthesis of Bismuth Vanadate as Visible-light Photocatalyst by Precipitation Reaction (침전 반응에 의한 가시광 광촉매 Bismuth Vanadate 합성)

  • Kim, Sang-Mun;Lee, Jae-Yong;Mun, Choo-Yeun;Lee, Hean-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.630-635
    • /
    • 2011
  • Bismuth vanadate($BiVO_4$) with monoclinic phase as photocatalyst under visible light is synthesized by precipitation reaction in hot water. Properties such as crystal phase, particle morphology and visual light absorbance as well as the effects of thermal treatment for $BiVO_4$ powders are investigated. $BiVO_4$ powders with both single monoclinic phase and 0.2 ${\mu}m$ in particle size are synthesized when precipitate is stirred in water for 5 h at 95$^{\circ}C$. Well-developed monoclinic phase and light absorption property under 535 nm are observed as a result of thermal treatment for 1 h at 300$^{\circ}C$ after precipitation reaction in water for 5 h at 95$^{\circ}C$. Degradation of monoclinic crystal is found in firing above 350$^{\circ}C$, and particle growth is occurred in firing above 550$^{\circ}C$.

Study on the Crystal Phases of $Ca_{1.5-1.5x}Bi_xVO_4$ Compositions by Bi Substitution (Bi 치환에 따른 $Ca_{1.5-1.5x}Bi_xVO_4$ 조성 화합물의 결정상에 관한 연구)

  • Kim, Myung Seab;Park, Sun Min;Kim, Ho Kun
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.547-551
    • /
    • 1999
  • The phase change upon Bi substitutions in $Ca_{1.5-1.5x}Bi_xVO_4$ has been systematically studied. The x value corresponding to the maximum Bi substitutions reades to 0.14 and in this range($x{\leq}0.14$), the single phasic $Ca_3(VO_4)_2$ can be identified. However, a new phase of $BiV_{1.025}O_{4+x}$ is apparently formed along with the $Ca_3(VO_4)_2$ phase, when the x value exceeds beyond 0.18 ($x{\geq}0.18$). As a result of Bi substitution in the range of x$\leq$0.14, the interplanar space($d_300$) becomes larger as the Bi content increases. Since the composition of single phasic $Ca_{1.29}Bi_{0.14}VO_4$ (x=O.14) is, however, incongruent melting one, no definite melting point could be observed. But we found that its solidus temperature was 1182$^{\circ}C$ by DTA analysis.

  • PDF

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.