• Title/Summary/Keyword: $BiMnO_3$

Search Result 102, Processing Time 0.021 seconds

Microstructure Properties of Zinc Oxide Varistor with $Sb_2O_3$ Contents for Low Voltage Application ($Sb_2O_3$함량 변화에 따른 저전압용 ZnO Varistor의 미세구조 특성)

  • 박종주;서정선
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.149-153
    • /
    • 1997
  • ZnO varistor based on ZnO-Bi2O3-Co3O4-MnCO3-Cr2-O3-Sb2O3 system with Sb2O3 contents were studied for grain size variation and microstructure properties. The composition of pure ZnO varistor was observed composition was inhibited owing to formation of Zn7Sb2O12 spinel phase and did not observed abnrmal grain growth. With Sb2O3 contents, the grain sizes of ZnO varistor were remarkably decreased and the microstructure had the distribution of dense and homogeneous grains.

  • PDF

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Dielectric and Piezoelectric Properties of Low Temperature Sintering PSN-PZI Ceramics with BiFe3 Substitution (BiFe3첨가에 따른 저온소결 PSN-PZT세라믹스의 유전 및 압전 특성)

  • 류주현;정광현;정영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.492-496
    • /
    • 2004
  • In this study, (0.96 -x)(PSN-PZT)-xBF-0.04 PNW+0.3wt%MnO$_2$+0.6wt%CuO ceramics were fabricated with the variations of the amount of BiFeO$_3$substitution and sintering temperature for the development of modified ceramics which can be sintered in the low temperature($\leq$100$0^{\circ}C$ ), and their microstructural, dielectric and piezoelectric characteristics were investigated. As the amount of BiFeO$_3$ substitution was increased, the density, mechanical quality factor(Q$_{m}$) and electromechanical coupling factor(k$_{p}$) showed the maximum value at each of sintering temperature. At sintering temperature of 98$0^{\circ}C$ and BiFeO$_3$substitution of 2 mol%, the density, dielectric constant and electromechanical coupling factor(k$_{p}$) showed the maximum value of 7.84 g/㎤, 1415 and 0.49, respectively. And at sintering temperature of 95$0^{\circ}C$ and BiFeO$_3$substitution of 3mol%, mechanical quality factor showed the maximum value of 1062. 1062.

Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.284-289
    • /
    • 2014
  • The effects of additives (Nb, Bi and Cr) on the microstructure, varistor properties, and aging behavior of V/Mn/Co/ La/Dy co-doped zinc oxide ceramics were systematically investigated. An analysis of the microstructure showed that all of the ceramics that were modified with various additives were composed of zinc oxide grain as the main phase, and secondary phases such as $Zn_3(VO_4)_2$, $ZnV_2O_4$, and $DyVO_4$. The $Bi_2O_3$-modified samples exhibited the lowest density, the $Nb_2O_5$-modified sample exhibited the largest average grain size, and the $Cr_2O_3$-modified samples exhibited the highest breakdown field. All additives improved the non-ohmic coefficient (${\alpha}$) by either a small or a large margin, and in particular an $Nb_2O_5$ additive noticeably increased the non-ohmic coefficient to be as large as 36. The $Bi_2O_3$-modified samples exhibited the highest stability with variation rates for the breakdown field and for the non-ohmic coefficient (${\alpha}$) of -1.2% and -26.3%, respectively, after application of a DC accelerated aging stress of 0.85 EB/$85^{\circ}C$/24 h.

Somteromg Behavior and Electrical Characteristics of ZnO Variators Prepared by Pechini Process (Pechini 방법으로 제조된 ZnO 바리스터의 소결 거동 및 전기적 특성)

  • 윤상원;심영재;조성걸
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.499-504
    • /
    • 1998
  • ZnO varistors having a composition of 98.0 mol% ZnO 1.0 mol% $Bi_2O_3$ 0.5 mol% $MnO_2$ were prepared by the Pechini process and the sintering behavior and electrical characteristics were studied. ZnO varis-색 powder with $1.5\mu\textrm{m}$ mean diameter and narow particle size distribution was obtained using the Pechni pro-cess. Typical intermediate stage grain growth of liquid phase sintering was observed by sintering at $1100^{\circ}C$ At this temperature ZnO varistors having uniform grain size and Bi-rich liquid phase distributed uniformly along grain boundaries were prepared. The nonlinear coefficients of the ZnO varistors were in the range of 40-60 The breakdown voltages of the varistors were nearly inversely propeortional to the grain size which reflects that ZnO varistors prepared by the Pechini process have uniform distribution of Bi-rich liquid phase along grain boundaries It is believed that the microstructures of ZnO varistors can be controlled effectively by using the Pechini process which makes the control of the electrical properties of ZnO varistors possible.

  • PDF

Dielectric and Piezoelectric Characteristics of Low Temperature Sintering PbTiO3 System Ceramics with amount of Bi2O3 Addition (Bi2O3 첨가량에 따른 저온소결 PbTiO3계 세라믹스의 유전 및 압전특성)

  • Yoo, Ju-Hyun;Kim, Do-Hyung;Lee, Sang-Ho;Sohn, Eun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.771-775
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramics for thickness vibration mode multilayer piezoelectric transformer, $PbTiO_3$ system ceramics were fabricated using $Na_2CO_3,\;Li_2CO_3,\;MnO_2\;and\;Bi_2O_3$ as sintering aids and their dielectric and piezoeletric properties were investigated according to the amount of $Bi_2O_3$ addition. At the sintering temperature of $900^{\circ}C\;and\;Bi_2O_3$ addition of 0.1 wt%, density, grain size, thickness vibration mode eletromechanical coupling factor($k_t$), thickness vibration mode mechanical quality factor($Q_{mt}$) and dielecteic constant(${\varepsilon}_r$) showed the optimum value of $6.94g/cm^3,\;2.413{\mu}m$, 0.497, 3,162 and 209, respectively, for thickness vibration mode multilayer piezoelectric transformer application.

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.

Processing and Properties of Calcium Cobaltite Layer Structure Oxide Thermoelectrics (칼슘 코발트 층상 산화물계 열전반도체의 제조와 물성)

  • Kwak, Dong-Ha;Park, Jong-Won;Yoon, Sun-Ho;Choi, Jung-Chul;Choi, Seung-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Thermoelectric properties of calcium cobalt layer structure oxide system, $Ca_3Co_2O_6$ and $Ca_3Co_4O_9$ were investigated at the temperature range of 300 to 1000K for the application of thermoelectric generation. In the composition, the Ca site was partially substituted with Bi, Sr, La, K and the Co site was partially substituted with Mn, Fe, Ni, Cu, Zn. The thermoelectric properties of Bi substituted $Ca_3Co_4O_9$. $Ca_{2.7}Bi_{0.3}Co_4O_9$ for electrical conductivity, Seebeck coefficient and power factor were $85.4({\Omega}$cm)^{-l}, $176.2{\mu}V/K$ and $265.2{\mu}W/K^m$, respectively. The unit thermoelectric couple was fabricated with the p-type of $Ca_{2.7}Bi_{0.3}Co_4O_9$ and n-type ($Zn_{0.98}Al_{0.02}$)O thermoelectrics whose figure-of-merit(Z) were $0.87{\times}10^{-4}/K$ and $0.41{\times}10^4/K$, respectively. The generated thermoelectric power was about 30mV at the temperature difference of 120K in the unit thermoelectric couple.

  • PDF