• Title/Summary/Keyword: $BiFeO_3 $

Search Result 233, Processing Time 0.032 seconds

Preparation of Textured Bi0.5(Na,K)0.5TiO3-BiFeO3 Solid Solutions by Reactive-Templated Grain Growth Process

  • Kato, Kyoko;Kimura, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.693-699
    • /
    • 2006
  • Textured $Bi_{0.5}(Na,K)_{0.5}TiO_3-BiFeO_3$ ceramics were prepared by the reactive-templated grain growth process, using platelike $Bi_4Ti_3O_{12}$ particles. The effects of chemical composition in $Bi_{0.5}(Na,K)_{0.5}TiO_3$ on texture development and densification were examined. Textured ceramics were obtained by using $Bi_{0.5}K_{0.5}TiO_3$ as an end member of the solid solution but densification was limited. Dense ceramics were obtained by using $Bi_{0.5}Na_{0.5}TiO_3$ but texture did not develop. Dense, textured ceramics were obtained by using $Bi_{0.5}(Na_{0.5}K_{0.5})_{0.5}TiO_3$.

Effect of Bismuth Excess on Piezoelectric and Dielectric Properties of BiFeO3-BaTiO3 Ceramics (Bi 과잉에 따른 BiFeO3-BaTiO3 세라믹스의 압전 및 유전특성)

  • Lee, Jae Hong;Lee, Myang Hwan;Song, Tae Kwon;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.144-148
    • /
    • 2017
  • The effects of an excess of Bi on the piezoelectric and dielectric properties of $0.60Bi_{1+x}FeO_3-0.40BaTiO_3$ (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of $980{\sim}1070^{\circ}C$. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature ($T_C$) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and $1030^{\circ}C$, remnant polarization ($2P_r$) was as high as $45.4{\mu}C/cm^2$ and strain at 40 kV/cm was up to 0.176 %.

Epitaxial Growth of $BiFeO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ Thin Films Deposited by Pulsed Laser Deposition

  • Baek, Chang-U;Lee, Jong-Pil;Seong, Gil-Dong;Jeong, Jong-Hun;Ryu, Jeong-Ho;Yun, Un-Ha;Park, Dong-Su;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Multiferroic thin films with composition $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$ were epitaxially grown by pulsed laser deposition on $SrRuO_3(001)/SrTiO_3$ (000) substrate $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$, which is assumed to be morphotropic phase boundary (MPB), that showed superior dielectric, ferroelectric and magnetic properties in our study on polycrystalline films. The structures of epitaxially grown films were characterized by means of XRD. From P-E measurements, samples exhibited typical ferroelectric hysteresis loops and large remnant polarization, whose value is much larger than those of pure BFO film. The enhancement of dielectric, ferroelectric, magnetic properties was attributed to the structural distortion induced by the BCN addition and the high physical stress effect.

  • PDF

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Preparation and Characterization of $BaTiO_3-CuFe_2O_4$ Bi-Layer Thin Films Prepared By Pulsed Laser Deposition

  • Yoon, Dong-Jin;Kim, Kyung-Man;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.209-209
    • /
    • 2010
  • Multiferroic properties of $BaTiO_3-CuFe_2O_4$ thin films grown on highly-textured Pt(111)/$TiO_2/SiO_2$/Si(100) substrates were studied. $CuFe_2O_4$ ceramic target was synthesized by mixing oxide powders of CuO, $Fe_2O_03$, $BaTiO_3$ ceramic target was also prepared separately. The film structure was of bi-layer type, where $BaTiO_3$ layer lies underneath of $CuFe_2O_4$ layer, where both layers were grown by pulsed laser deposition technique. We will report the ferroelectric and magnetic properties of $BaTiO_3-CuFe_2O_4$ bi-layer films in some detail.

  • PDF

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Park, Il-Jin;Park, Chu-Sik;Kang, Kyoung-Soo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.110-113
    • /
    • 2008
  • In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

Growth of Bi:YIG Thick Films by Change of PO/Bi2O3 Molar Ratio (PO/Bi2O3 변화에 따른 Bi:YIC 단결정 후박의 성장)

  • 윤석규;김근영;김용탁;정현민;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.589-593
    • /
    • 2002
  • The single crystalline thick fi1ms of Bi:Y$_3$Fe$_{5}$ $O_{12}$(Bi:YIG) were grown on (GdCa)$_3$(GaMgZr)$_{5}$ $O_{12}$(SGGG) by Liquid Phase Epitaxy (LPE). The changes of lattice mismatch and Bi concentration were investigated in the thick film growth as a function of PO/Bi$_2$ $O_3$ molar ratio, with keeping constant of substrate rotation speed, supercooling and growth time. It was grown that the lattice constant of the garnet single crystalline thick films and Bi content increased with decreasing of PO/Bi$_2$ $O_3$ molar ratio. Bi concentration decreased with increasing of the film thickness.