Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.3.144

Effect of Bismuth Excess on Piezoelectric and Dielectric Properties of BiFeO3-BaTiO3 Ceramics  

Lee, Jae Hong (School of Advanced Materials and Engineering, Changwon National University)
Lee, Myang Hwan (School of Advanced Materials and Engineering, Changwon National University)
Song, Tae Kwon (School of Advanced Materials and Engineering, Changwon National University)
Kim, Won-Jeong (Department of Physics, Changwon National University)
Sung, Yeon Soo (Department of Materials and Engineering, Technology (POSTECH))
Kim, Myong-Ho (School of Advanced Materials and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.27, no.3, 2017 , pp. 144-148 More about this Journal
Abstract
The effects of an excess of Bi on the piezoelectric and dielectric properties of $0.60Bi_{1+x}FeO_3-0.40BaTiO_3$ (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of $980{\sim}1070^{\circ}C$. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature ($T_C$) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and $1030^{\circ}C$, remnant polarization ($2P_r$) was as high as $45.4{\mu}C/cm^2$ and strain at 40 kV/cm was up to 0.176 %.
Keywords
$BiFeO_3-BaTiO_3$ system; Bi excess; strain; curie temperature; lead-free;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Malik, A. Hussain, A. Zaman, A. Maqbool, J. U. Rahman, T. K. Song, W. J. Kim and M. H. Kim, RSC Adv., 5, 96953 (2015).   DOI
2 T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005).   DOI
3 N. N. Krainik, N. P. Khuchua, V. V. Zhdanova and V. A. Evseev, Sov. Phys. Solid State,. 8, 654 (1966).
4 S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009).   DOI
5 C. I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Fromling, J. Rodel and W. Jo, J. Appl. Phys., 119, 154101 (2016).   DOI
6 A. K. Pradhan, Kai Zhang, D. Hunter, J. B. Dadson and G. B. Loutts, J. Appl Phys., 97, 093903 (2005).   DOI
7 Y. H. Lin, Q. Jiang, Y. Wang, C. W. Nan, L. Chen and J. Yu, Appl, Phys. Lett., 90, 172507 (2007).   DOI
8 B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys., 25, 809 (1954).   DOI
9 Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang and T. R. Shrout, J. Appl Phys., 103, 07E507 (2008).   DOI
10 P. Suresh, S. Srinath, J. Alloys Compd., 554, 271 (2013).   DOI
11 K. S. Nalwa and A. Garg, J. Appl. Phys., 103, 044101 (2008).   DOI
12 S. Karimi, I. M. Reaney, Y. Han, J. Pokorny and I. Sterianou, J. Mater. Sci., 44, 5102 (2009).   DOI
13 M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do and I. K. Jeong, Adv. Mater., 27, 6976 (2015).   DOI
14 C. Zhou, H. Yang, Q. Zhou, Z. Cen, W. Li, C. Yuan and H. Wang, Ceram. Int., 39, 4307 (2013).   DOI
15 Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan and S. L. Yuan, Solid State Sci., 13, 2196 (2011).   DOI
16 Q. Wang, Z. Wang, X. Q. Liu and X. M. Chen, J. Am. Ceram. Soc., 95, 670 (2012).   DOI
17 C. A. Randall, R. E. Newnham, L. E. Cross "History of the First Ferroelectric Oxide, BaTiO3", Materials Research Institute, The Pennsylvania State University, USA, (2004).
18 J. Chen and J. Cheng, J, Alloys Compd., 589, 115 (2014).   DOI
19 C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li and H. Wang, J. Mater. Sci., 24, 1685 (2013).
20 H. Du, D. Liu, F. Tang, D. Zhu, W. Zhou and S. Qu, J. Am. Ceram Soc., 90, 2824(2007).   DOI
21 Q. Fan, C. Zhou, W. Zeng, L. Cao, C. Yuan, G. Rao and X. Li, J. Electroceram., 36, 1 (2016).   DOI