• Title/Summary/Keyword: $BaTiO_3$ effect

Search Result 268, Processing Time 0.027 seconds

Finite element analysis for piezoelectricity of multilayer ceramic capacitor (적층 세라믹 콘덴서의 압전 유한요소 해석모델 구축)

  • Park, No-Cheol;Ko, Byung-Han;Park, Young-Pil;Park, Heungkil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.72-74
    • /
    • 2014
  • Multilayer ceramic capacitor (MLCC) makes acoustic noise of electronic devices. Conversed piezoelectric effect of dielectric substance consists of $BaTiO_3$ causes vibration of MLCC so it must be analyzed to reduce the noise. Thus, finite element model for piezoelectric analysis of MLCC was constructed in this paper. Piezoelectric characteristics of MLCC was considered for the accurate simulation result. Displacement response for sinusoidal voltage signal was measured and simulation result was verified with test result.

  • PDF

Preparation and Characterization of Polymer Coated BaTiO3 and Polyimide Nanocomposite Films (고분자로 표면 코팅된 BaTiO3와 이를 이용한 폴리이미드 나노복합필름의 제조 및 특성)

  • Han, Seung San;Han, Ji Yun;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.527-531
    • /
    • 2006
  • We have prepared organophilic inorganic particles and polyimide (PI) nanocomposite having excellent thermal stability and high dielectric constant that can be used for electronic application such as capacitor. We have chosen barium titanate (BT), a high dielectric constantmaterial and its surface was coated with nylon 6 to improve the affinity with PI. The FT-IR and TEM studies showed that the organophilic inorganic particle (BTN) has a polymer shell with thickness of 5 nm. We have suggested that it is possible to control the thickness of coating surface and also indicated the relationship between the ratio of inside and outside radius of BTN and the weight fraction of BT. The PI nanocomposite films based on poly(amic acid) and BTN were prepared by cyclodehydration reaction. The homogeneous dispersion of BTN in PI matrix was identified by using SEM. We have investigated the effect of BTN content on the coefficient of thermal stability, integral procedural decomposition temperature (IPDT), and dielectric constant of PI nanocomposite films.

Studies on magneto-electro-elastic cantilever beam under thermal environment

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.205-217
    • /
    • 2012
  • A smart beam made of magneto-electro-elastic (MEE) material having piezoelectric phase and piezomagnetic phase, shows the coupling between magnetic, electric, thermal and mechanical under thermal environment. Product properties such as pyroelectric and pyromagnetic are generated in this MEE material under thermal environment. Recently studies have been published on the product properties (pyroelectric and pyromagnetic) for magneto-electro-thermo-elastic smart composite. Hence, the magneto-electro-elastic beam with different volume fractions, investigated under uniform temperature rise is the main aim of this paper, to study the influence of product properties on clamped-free boundary condition, using finite element procedures. The finite element beam is modeled using eight node 3D brick element with five nodal degrees of freedom viz. displacements in the x, y and z directions and electric and magnetic potentials. It is found that a significant increase in electric potential observed at volume fraction of $BaTiO_3$, $v_f$ = 0.2 due to pyroelectric effect. In-contrast, the displacements and stresses are not much affected.

Effect of Nitrogen, Titanium, and Yttrium Doping on High-K Materials as Charge Storage Layer

  • Cui, Ziyang;Xin, Dongxu;Park, Jinsu;Kim, Jaemin;Agrawal, Khushabu;Cho, Eun-Chel;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.445-449
    • /
    • 2020
  • Non-volatile memory is approaching its fundamental limits with the Si3N4 storage layer, necessitating the use of alternative materials to achieve a higher programming/erasing speed, larger storage window, and better data retention at lower operating voltage. This limitation has restricted the development of the charge-trap memory, but can be addressed by using high-k dielectrics. The paper reviews the doping of nitrogen, titanium, and yttrium on high-k dielectrics as a storage layer by comparing MONOS devices with different storage layers. The results show that nitrogen doping increases the storage window of the Gd2O3 storage layer and improves its charge retention. Titanium doping can increase the charge capture rate of HfO2 storage layer. Yttrium doping increases the storage window of the BaTiO3 storage layer and improves its fatigue characteristics. Parameters such as the dielectric constant, leakage current, and speed of the memory device can be controlled by maintaining a suitable amount of external impurities in the device.

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.

Effect of Re-oxidation on the Electrical Properties of Mutilayered PTC Thermistors (적층 PTC 써미스터의 전기적 특성에 대한 재산화의 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • The alumina substrates that Ni electrode was printed on and the multi-layered PTCR thermistors of which composition is $(Ba_{0.998}Ce_{0.002})TiO_3+0.001MnCO_3+0.05BN$ were fabricated by a thick film process, and the effect of re-oxidation temperature on their resistivities and resistance jumps were investigated, respectively. Ni electroded alumina substrate and the multi-layered PTC thermistor were sintered at $1150^{\circ}C$ for 2 h under $PO_2=10^{-6}$ Pa and then re-oxidized at $600{\sim}850^{\circ}C$ for 20 min. With increasing the re-oxidation temperature, the room temperature resistivity increased and the resistance jump ($LogR_{290}/R_{25}$) decreased, which seems to be related to the oxidation of Ni electrode. The small sized chip PTC thermistor such as 2012 and 3216 exhibits a nonlinear and rectifying behavior in I-V curve but the large sized chip PTC thermistor such as 4532 and 6532 shows a linear and ohmic behavior. Also, the small sized chip PTC thermistor such as 2012 and 3216 is more dependent on the re-oxidation temperature and easy to be oxidized in comparison with the large sized chip PTC thermistor such as 4532 and 6532. So, the re-oxidation conditions of chip PTC thermistor may be determined by considering the chip size.

Effect of Internal Electrode on the Microstructure of Multilayer PTC Thermistor (적층형 PTC 서미스터의 미세구조와 PTCR 물성에 미치는 내부전극재의 영향)

  • Myoung, Seong-Jae;Lee, Jung-Chul;Hur, Geun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.181-181
    • /
    • 2007
  • PTCR 세라믹스를 적층형 부품으로 제조할 경우 소형화, 저 저항화 및 과전류 유입 시 빠른 응답특성을 갖는다는 장점을 가지고 있으며, 이러한 적층형 부품제조시에는 내부전극재가 부품소자의 물성에 중요한 영향을 미친다. 특히 우수한 옴성 접촉(Ohmic Contact)을 갖는 Zn, Fe, Sn, Ni 등의 적층 PTC용 전극재는 높은 산화특성으로 인해 재산화 과정에서의 비옴성 접촉(Non-ohmic contact)을 갖게 되어 PTC 특성을 저하시킬 우려가 있다. 따라서 본 연구에서는 적층형 PTCR 세라믹스의 내부전극재와 반도체 세라믹층의 동시소성거동 및 적층 PTCR 세라믹스의 전기적 특성을 평가하였다. 본 연구에 적용된 내부전극재로는 Ni 전극을 사용하였고, Ni 전극용 paste로는 무공제 paste, 반도체 세라믹공제 paste, $BaTiO_3$ 공제 paste의 3종 전극재가 이용되었다. 적층형 PTCR 세라믹스의 제조공정은 테이프 캐스팅(Tape casting), 내부전극인쇄, 적층 및 동시소성을 포함하는 적층화공정을 적용하였다. 각각의 전극 paste를 적용하여 제조된 chip은 미세구조관찰, I-V특성, R-T특성 등을 평가하여 내부전극내 세라믹공제의 영향을 고찰하였다.

  • PDF

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.